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ABSTRACT

Accounting for Model Uncertainty in Linear Mixed-Effects Models

by

Adam P. Sima

Chair: Jessica M. Ketchum

Standard statistical decision-making tools, such as inference, confidence intervals and

forecasting, are contingent on the assumption that the statistical model used in the

analysis is the true model. In linear mixed-effect models, ignoring model uncertainty

results in an underestimation of the residual variance, contributing to hypothesis

tests that demonstrate larger than nominal Type-I errors and confidence intervals

with smaller than nominal coverage probabilities. A novel utilization of the general-

ized degrees of freedom developed by Zhang et al. (2012) is used to adjust the estimate

of the residual variance for model uncertainty. Additionally, the general global linear

approximation is extended to linear mixed-effect models to adjust the standard errors

of the parameter estimates for model uncertainty. Both of these methods use a pertur-

bation method for estimation, where random noise is added to the response variable

and, conditional on the observed responses, the corresponding estimate is calculated.

A simulation study demonstrates that when the proposed methodologies are utilized,

both the variance and standard errors are inflated for model uncertainty. However,

when a data-driven strategy is employed, the proposed methodologies show limited

usefulness. These methods are evaluated with a trial assessing the performance of

x
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cervical traction in the treatment of cervical radiculopathy.
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CHAPTER I

Introduction

1.1 Model Selection from a Conceptual Point of View

Statistical models are used as a way to map real world phenomena to mathemat-

ical constructs. Conditional on a particular statistical model, statisticians and other

methodologists have developed extensive methods to estimate, make inference and

predict future responses based on a set of predictor variables. However, there is no

universal accepted strategy for proposing such models, particularly if hypotheses are

postulated a priori. To foster a discussion of these strategies, consider a study where

the goal is to determine the relationship between a predictor and response variable.

An easy way to determine the relationship between these two variables is to include

just these variables (and perhaps an adjustment for the overall mean) in a model

and use standard statistical techniques to perform estimation and inference. This

strategy, which is common in practice, is attractive because it is an easy model to

interpret and has close to optimal statistical power properties.

However, it is possible that the response variable is also related to one or more

other predictor variables. Since there usually is a relationship among the predictor

variables themselves, as well as the between each of the predictor and response vari-

ables, the conclusion using the entire set of predictor variables in a statistical model

may not coincide or agree with the marginal analysis described above. To ensure

1
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completely unbiased parameter estimates, a model containing all predictor variables

should be fit. This strategy can also adjust for any moderating, confounding or medi-

ating effects the variables have amongst themselves. However, this model may suffer

difficulty of interpretation or power issues. More importantly, this model is more

likely to be ‘overfit’, meaning that parameter estimates are dependent on the sample

generated and are not typically generalizable to the larger population or a different

sample.

The balancing of bias in estimation and simplicity in interpretation of a model cuts

to the heart of model selection. Model selection procedures attempt to balance the

bias introduced from omitting important predictors and the efficiency, or overfitting,

due to including too many predictors. Generally speaking, for models to be useful they

must include all important predictors, as omitting any important predictors can result

in biased parameter estimates. Conversely, including too many predictors in a model

will yield inflated variance estimates which can potentially limit the utility of inference

procedures and confidence intervals in estimation and prediction. Thus, proposing

statistical models is an often unacknowledged skill that truly blends statistics and

field science.

Optimally, models should be proposed using a priori information derived from the

field matter. To ensure that the chosen model contains unbiased and efficient param-

eter estimates, only variables that are either related to the response or are relevant

for hypothesis testing should be included. There is often no clear agreement as to

the set of important predictors in any particular clinical situation. Thus, statisticians

have developed a broad range of data-driven model selection techniques to assist in

the model building process. These techniques are designed to balance the bias and

variance of the final model. There are many different model selection strategies such

as best subsets and progressive selection, and these will be more broadly discussed in

the subsequent sections.

2
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Model selection techniques are most appropriately used when there is enough

data to split into a training and test set. To help eliminate problems of overfitting

a model to a particular set of predictors, a model selection procedure is used on the

training set. When a final model is found, the test set is then used for estimation,

inference, and prediction (Hastie et al. (2001)). In practice, splitting the data into

two groups is not common, as power considerations can make splitting the data

counterproductive. Clinicians have also resisted splitting the data because of concerns

about gerneralizability, however, proper randomization can allay this issue. Rather,

researchers typically use a model selection strategy on the whole set of data and then,

using the same data, answer their research questions using the appropriate estimation,

inference and prediction methods.

Performing inference on the same data that was used for model selection can have

detrimental consequences on the variance estimates and hypothesis testing character-

istics. This is due to the fact that common model selection procedures are designed

to select models that slightly favor overfit models as the property of unbiasedness in

the fixed-effect estimates is believed to be more favorable compared to the efficiency

property. The literature contains many instances when the Type-I error of hypothesis

tests and coverage probabilities of confidence intervals that depart from the nominal

value when separate training and test sets are not used. Furthermore, the variance

estimates themselves are biased downward when model selection and inference are

performed on the same dataset.

The quantities discussed above are further biased due to the fact that estimation

and inference were performed on a model that is assumed to be true, rather than one

that is known to be true. If model selection is performed, it is inherently assumed

that the true model is not known. After selecting a model, this model is used as

if it were true; ignoring the uncertainty in the model that motivated the use of the

model selection procedure in the first place. Ignoring the model uncertainty results

3
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inan underestimation of the variance estimates, which in turn, could result in higher

Type-I errors and smaller than nominal coverage probabilities.

1.2 A Randomized Clinical Trial for Cervical Radiculopathy

Cervical radiculopathy occurs when the nerves in the cervical spine become com-

pressed by the cervical vertebrae. It is more commonly referred to as a pinched nerve

and can result in pain in the neck that can extend down into the shoulders and upper

extremities. Loss of sensation in the upper extremities is another common symp-

tom. Treatment for cervical radiculopathy typically involves non-surgical treatment

regimens such as posture education, manual therapy, excercise and cervical traction.

An overview of some common manual therapy and exercise regimens can be found

online in the eAppendix published by Young et al. (2010). One particular treatment

used for cervical radiculopathy is cervical traction, which involves pulling the head

up from the neck allowing the spaces in the vertebrae of the neck to expand, thus

relieving the pressure on the nerves. In a clinical trial, Joghataei et al. (2004) found

that patients treated with cervical traction had improved grip strength after 5 physical

therapy visits compared to a group of controls. However, no pain or quality of life

outcomes were recorded in this study.

A multi-center randomized clinical trial was conducted by Young et al. (2010) to

determine if patients treated with cervical traction along with a multimodal treatment

program (education, exercise and manual therapy) demonstrate better quality of life

outcomes compared to a control group treated with only the multimodal treatment.

Only a summary of the trial will be discussed here; the details of the trial can be found

in the aforementioned reference. A total of 121 patients were recruited from 7 different

clinics located in Virginia, Georgia, Alabama and West Virginia. Of those patients, 81

were randomized to either receive cervical traction or a sham traction regimen along

with the multimodal treatment program and were not missing their 4-week follow-up.

4
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The primary outcomes of the study were the Numeric Pain Rating Scale (NPRS), the

Neck Disability Index (NDI) and the Patient-Specific Functional Scale (PSFS) while a

number of secondary outcomes were also recorded. These outcomes were measured at

baseline and again at 2 and 4 weeks post-treatment. Besides the time of measurement

and treatment group, variables including the patient’s age (years), sex, body mass

index (BMI) (kg/m2), whether the patient had any previous symptoms, whether the

injury was work-related, the duration of symptoms (> or ≤ 3 weeks), the number

of physical therapy visits and whether the patient had bothersome pain or numbness

were recorded. Calculated scores made up the remainder of these variables, including

baseline NDI, the Fear Avoidance Belief Questionnaire (FABQ) score at both 2 and

4 weeks, and baseline pain, calculated using the Numeric Pain Rating Scale. These

variables were recorded for this trial but not used in the primary analysis in the report

of the study. A more detailed explanation of these variables is given in the following

chapter. For simplicity’s sake, the only response variable considered in this work

will be the NDI, which is a variable bounded in the range [0, 50] where higher scores

indicate higher levels of disability. Further details of how the NDI will be modeled,

and the measures used to model it, are discussed in subsequent chapters.

A linear mixed-effect model was used to analyze the data from this trial because

of its characteristic as a multivariable model and its ability to adjust for potential

non-independence within a subject, which isinherent due to the longitudinal nature

of the trial design. All previous work in accounting for model uncertainty has focused

on linear regression models where any two realizations of the response variable can

be considered independent. Currently, the problems caused by performing model

selection on the same data used for testing and ignoring model uncertainty has not

been studied in linear mixed-effects models. These models are used when the response

variables cannot be considered independent. This work addresses these problems in

covariance pattern models, where the error terms cannot be considered independent

5
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and uses the cervical radiculopathy trial is used as a motivating example.

Although the length of text in this work may argue otherwise, the clinical con-

sequences of ignoring model uncertainty serves as the impetus of this research, as

opposed to the statistical problem-solving. The progress of science will always be

constrained by that which we don’t know. This work attempts to quantify some of

this uncertainty in the model used for an analysis and incorporate it into statistical

models so that the results from studies are more generalizable to real-world situations.

1.3 Outline

An overview of model selection procedures in both linear regression and linear

mixed-effect models are presented in Chapter II. This section details some issues that

have been discussed in the context of using the same data to perform both model

selection and hypothesis testing for linear regression models and ignoring the model

uncertainty in inference. This chapter will conclude with a simulation study to show

that these problems extend to the linear mixed-effects model.

Chapter III discusses the behavior of the estimate of the residual variance when

failing to account for model uncertainty. An estimate of the residual variance that

adjusts for model uncertainty using the concept of generalized degrees of freedom will

be proposed. This work extends the work of Ye (1998) and Zhang et al. (2012) to

linear mixed-effect models and uses a Monte-Carlo algorithm based on perturbations

of the response variable to estimate the generalized degrees of freedom. The simu-

lation study from Chapter II will be extended to assess the results of the proposed

methodology.

Extending the work presented in Chapter III, Chapter IV shows that the variance

of the fixed-effect parameters may be biased when model uncertainty is ignored. A

perturbation method that is similar in concept, but different in execution, to the

estimation method used for the generalized degrees of freedom is used to estimate
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both the fixed-effect parameters as well their covariance matrix. This work extends

the work of Shen et al. (2004a). The aforementioned simulation study will be further

extended to discuss these results.

In all of the aforementioned chapters, the impact of accounting for model selection

on the randomized clinical trial for treatment of patients with cervical radiculopathy

are discussed. A summary of the findings, limitations, and future work are discussed

in Chapter V.
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CHAPTER II

Background and Characteristics of Post-Model

Selection Estimators

In view of the the outline discussed in Chapter 1, Section 2.1 defines the statistical

model for model selection for the linear regression model, used when the response vari-

able can be considered independent. Several model selection strategies are reviewed,

as are the problems that occur when model selection and inference are performed on

the same dataset. Section 2.2 extends the linear regression model previously defined

for model selection, by Danilov and Magnus (2004) and Shen et al. (2004a), to the set-

tings in which the linear mixed-effects model. In Section 2.3, a simulation study will

shows that the same problems that plague the independent-response case are present

when the error terms can be considered non-independent, such as in a covariance

pattern model. Section 2.4 presents an analysis of the cervical radiculopathy trial

using the mixed effects-model. Finally, Section 2.5 gives an outline of future work to

be considered and recommendations for practitioners undergoing model selection.
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2.1 Model selection in Linear Regression Models

Classically, the linear regression equation for a sampling unit is written as:

Yi = x′i · β + εi (2.1)

where Yi is the response for the ith sampling unit, xi is a vector of fixed covariates

corresponding to the ith sampling unit with corresponding parameter values β, and

εi is random error, assumed to have null mean and variance σ2. Combining over n

units, the model can be written as:

Y = X · β + ε (2.2)

where Y is a n × 1 vector of responses, X is a fixed n × p matrix of covariates

and β are the fixed-effect parameter values for the corresponding covariates in X.

The random error term, ε, is assumed to be have a multivariate normal distribution

with a null mean and variance σ2 · In×n. This variance assumption implies that all

observations are independent from any other observation and have the same error

variance. If either all or none of the variables in X are subject to model selection,

then (2.2) is sufficient for incorporating a model selection procedure. However, often

times researchers want to keep certain variables in the model so that inference can be

made on them. For instance, researchers would always want the intervention variable

of a clinical trial to remain in the model so they can perform a hypothesis test for the

corresponding parameter. A model intercept is also typically also kept in the model

to account for an overall mean shift from zero and not subject to model selection.

Thus, the variables in (2.2) can be partitioned as:

Y = X1 · β1 + X2 · β2 + ε (2.3)
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where X1 is a n × p1 design matrix not subject to model selection and whose cor-

responding parameters, β1, will always be estimated. Conversely, X2 is a n × p2

design matrix of covariates subject to model selection and the regression parameters

β2 could either be estimated or set to zero depending on the result of the model selec-

tion procedure. The set of covariates definining X1 will be referred to as the inference

set and X2 will be referred to as the selection set. The error term, ε, remains the

same as (2.2).

2.1.1 Model Selection Strategies

There are numerous methods to select the parameters in β2 to be estimated in the

linear regression model. These methods can broadly be combined into four general

strategies. The most extensive strategy that has been researched is the best-subset

strategy. This strategy involves fitting all 2p2 possible models and, for each model,

calculating a summary statistic to be used as a metric. Depending on the statistic,

the model corresponding to the highest or lowest value of this metric is the model the

is considered the optimal model.

One group of metrics that are used for models of almost any form, and continue to

garnermuch research interest, are known as information criteria. Briefly, information

criteria are based on the relative Kullback-Leibler distance which measures how much

information is lost when a model is used to estimate the truth. Since the truth is not

known and cannot be quantified, relative distances are used, such that small values of

the relative distance indicate a better approximation to the truth. The expectation

of the relative Kullback-Leibler distance under the parameter-space is of the form

−2 · logL + c · K, where L is the likelihood function and K is the number of the

parameters in the model, and c is a constant with respect to the data (Burnham and

Anderson (2002)).

Many different formulations of c have been proposed. Some of these criteria are
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only used with certain models or for particular types of response variables. The more

common information criteria can be used in a variety of circumstances. Two of the

most common types of the general information criteria are the AIC (c=2) and the

BIC (c=log(n)), with n being the total number of observations in the sample. To

account for small samples, Hurvich and Tsai (1990) created an information criterion

known as AICc, and uses c = AIC+ 2·K·(K+1)
n−K−1 . Rather than use the lowest value of the

information criterion, it is often recommended to use a model with less parameters if

this model is within 2 units of the recommended model. This is meant to adjust for

any overfitting caused by searching for the optimal model, and is generally referred

to as a parsimony correction.

The best-subset strategy does not always use the information criteria discussed

previously. Other common metrics developed specifically for linear regression models

are the coefficient of multiple determination (R2), the adjusted coefficient of multi-

ple determination (R2
a), Mallow’s Cp criterion, and the prediction sums of squares

(PRESS). Models with high values of R2 and R2
a are favored over models with

small values of these statistics, while the opposite is true for the PRESS value. For

Mallow’s Cp, favorable models are found when the model statistic is close to, but

not greater than, the number of non-zero regression parameter in the model (Kutner

et al. (2004)).

Another model selection strategy is known as progressive selection. Rather than fit

all 2p2 models, progressive selection either sequentially adds or subtracts parameters

to be estimated in the model. Four types of progressive selection, forward, backward,

forward stepwise and backward stepwise selection, are popular since they are easily

available in software packages. Forward selection starts with an intercept-only model

and performs separate analyses for each of the p2 variables in X2, obtaining p-values

for each parameter. The variable corresponding to the smallest p-value that is smaller

than a pre-specified level is added to the hypothesis set and the process repeats itself
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with the p2−1 remaining variables. The process stops when all the p-values of the non-

included variables are larger than a pre-specified level. Backward selection proceeds

similarly but, rather than add variables to the model, it starts with all parameters

being estimated and sets the parameters equal to zero if the corresponding p-values

are larger than the specified level. The forward stepwise algorithm is similar to the

forward selection algorithm but, after a variable is added, the variable is reanalyzed

in addition to the intercept to ensure that the p-value corresponding to the added

variable is lower than the pre-specified level, and the process continues. The backward

stepwise selection algorithm is similar, as it ensures it is not excluding any parameter

estimates that have p-values less than the pre-specified level.

Often times researchers follow model selection strategies that are not strictly a

best-subsets or progressive selection strategy. These methods are known as ad hoc

strategies and include any sort of mixture of the best-subsets and progressive selec-

tion strategies. Also included in this category is pre-screening, where the individual

bivariate association of each member of selection set is assessed with the response

variable and, if it meets a particular threshold of statistical or clinical importance,

it is included to be estimated in the final model. The parameter is set to be zero

otherwise. Resampling methods such as bootstrap and jacknife model selection are

considered ad hoc selection methods.

Lastly, complex and computationally intensive algorithms have been been de-

veloped that achieve model selection through less traditional means. These non-

traditional methods include, but are not limited to model averaging, penalized re-

gression (ie. LASSO), adaptive selection, and many of the other algorithms that are

currently being developed. These works typically further the traditional model selec-

tion procedures by allowing model selection for cases where the traditional algorithms

are not suited, such as the case where n < p. An overview of many these methods

are discussed in Hastie et al. (2001).
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Each of the model selection strategies has certain asymptotic properties. These

describe how the model selection strategy performs compared to the true underlying

model. A model selection procedure is considered consistent if it chooses a correct

model with probability one as the sample size tends toward infinity Shibata (1984). If

the model chosen by the selection procedure is defined by M̂ , the set of true models

as Mo, and its complement MC
o , then this consistency property can be expressed as

P
(
M̂ ⊂Mo

)
→ 1 as n → ∞. The definition of the consistent property allows for

a set of true models, as opposed to a single true model. The distinction between a

set of true models, as opposed to a single true model, is further explored in Section

3.1 in the context of describing the behavior of the parameter estimates when model

uncertainty is taken into account.

Besides being consistent, model selection procedures can be overconsistent, mean-

ing the probability that an incorrect model is chosen tends toward 0, but the prob-

ability of the correct model being identified converges on an upper limit strictly less

than 1 (Leeb (2006)), or efficient, where the loss of the selected model approaches

the minimum loss of all considered models Hurvich and Tsai (1990). Of the common

information criteria, the AIC is considered efficient (although in certain cases it can

be consistent) while the BIC is consistent.The aymptotic convergence of the efficient

and consistent model selection properties were explored by Shao (1997) and consid-

ered to be in probabilitiy for both consistent and effiencient model selection; almost

sure convergence is achieved for consistent model selection. Thus, the fixed-effect

estimates will have this effect as well. Overconsistent model selection has neither of

these asymptotic convergence properties.

2.1.2 Issues with Model Selection

As mentioned in Chapter 1, the strategy of performing model selection and infer-

ence on the same data has been found to have serious detrimental consequences on
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characteristics of the post-model selection inference, or the process of making infer-

ence on a variable after performing both model selection and inference on the same

set of data. Shen et al. (2004a) and Mundry and Nunn (2009) use simulation stud-

ies to show the Type-I error rate of the post-model selection hypothesis tests can

reach as high as 50% when performing a model selection procedure and inference on

the same dataset. Demetrescu et al. (2011) shows similar results when using a time

series model. When the parameter of interest is non-zero, coverage probabilities of

confidence intervals are used to assess the performance of the post-model selection

estimators. Hurvich and Tsai (1990), Zhang (1992), Kabaila (1995), Kabaila (1998),

Kabaila and Leeb (2006) and Giri and Kabaila (2008) concluded that the coverage

probabilities of confidence intervals resulting from the linear regression model are

smaller than the nominal value, typically 0.95. Relatedly, Arditi (1989), Ye (1998)

and Danilov and Magnus (2004) each discuss how the estimated variance, σ̂2, of the

residuals often underestimates the true variance σ2. This downward bias results in

inflated statistics that describe the quality of fit of the model, such as the coefficient

of determination R2.

Additionally, it has been noted that the distribution of the post-model selection

fixed-effect estimates likely do not have a normal distribution as would be expected if

the true model was known (Sen (1979), Potscher (1991), Potscher (1995), Potscher

and Novak (1998), Leeb (2005), Leeb and Poetscher (2008), Leeb and Potscher (2005),

Leeb and Potscher (2003), Leeb (2009), Poetscher and Leeb (2009) and Berk et al.

(2010)). These distributions are often multi-modal and resembles mixture distri-

butions so the hypothesis testing procedures that are typically used are not even

asymptotically valid.

Many of the above references use a specific model selection strategy, such as

finding the model with the lowest AIC or a backward selection method. However,

Leeb and Potscher (2005) argue that, regardless of the model selection strategy, these
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consequences stem from the process of model selection, and not the specific model

selection procedure itself. This implies that, at least in small samples, the results

of post-model selection inference published in the literature could potentially report

biased and misleading results that may not be able to be repeated (Ioannidis (2008))

do to the overestimating of the significance of the effects and underestimating the

length of the confidence intervals.

2.1.3 Accounting for Model Uncertainty

Even if asymptotic normality of the fixed-effect parameters is justifiable, esti-

mates of the parameters in the statistical model are typically calculated assuming

the model is known. If the true model were known, then only estimation and predic-

tion procedures would be needed as the non-zero parameters would also be known.

The commonly used estimation and prediction procedures, either numerical or exact,

are contingent upon the true model being known. In practice, this situation rarely

happens. Rather, the underlying model is unknown and hypothesis testing must be

introduced to help not only to gain information about the relationship between the

response and predictor variables, but to understand the structure of the true model.

The inferences that are made are model dependent, as the estimates, hypothesis tests

and predicted values can change if a different models are used.

This suggests that the issues regarding the overfitting properties of model selec-

tion procedures are linked to model uncertainty. If there were no model uncertainty,

there would be no need for model selection procedures and the issues discussed pre-

viously would be non-existent. However, except in very controlled situations, such

as experiments in the bench sciences sciences such as chemistry or physics, this is

not the case in practice, especially in the biomedical fields. Therefore, addressing

the issue of model uncertainty should control the issues of overfitting. In fact, the

proposed methodology in Chapters 3 and 4 will treat the issues of model uncertainty
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and overfitting as one problem.

As discussed in the Chapter 1, performing model selection procedures attempts

to balance bias and efficiency of the model. This also assumes that the true model is

unknown and there is some uncertainty in the true structure of the model. Under cer-

tain conditions this model uncertainty can be ignored as the effects of the uncertainty

of the true model will have little, if any, impact on the choice of model, estimation,

inference and predicted values. These cases are limited to situations where the ele-

ments of the design matrix are orthogonal, the sample size, n, is large and there are

only a few important predictors that have a strong relationship with the response so

that the after accounting for these variables, near perfect predictions can be made.

Model uncertainty is rarely taken into account in practice, and ignoring it can

have serious consequences on the statistical conclusions. Because of the consistent,

over-consistent or efficient property of the model selection criteria used for the model

selection procedure, the fixed-effect parameters are asymptotically unbiased. How-

ever, the residual variance estimate accounting for model uncertainty has been found

to be greater than or equal to the residual variance estimate assuming the true model

is known (Shibata (1984)). Furthermore, Zhang (1992) proved that confidence in-

tervals computed after model selection procedures will have smaller than nominal

coverage probabilities. Thus, the issues with model selection that were discussed

above were expected and caused by both overfitting from performing model selection

and inference on the same set of data as well as ignoring the uncertainty due to model

selection.

Little methodology has been proposed in the literature to adjust for model un-

certainty. The methodology that does propose solutions to this problem generally

fall into one of two categories. The methodology in the first category attempts to

obtain empirical distributions for the estimated quantities and, based on these distri-

butions, estimates, confidence intervals and hypothesis tests can be performed. Salt
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et al. (2007), Austin (2008), Wang and Lagakos (2009) and Finos et al. (2010) all

use various techniques to achieve this goal. On the other hand, Ye (1998) and Shen

et al. (2004a) calculate alternate estimates of model parameters that directly take

into account model uncertainty.

2.2 Linear Mixed-Effects Models

Model selection for the linear mixed-effects model is more complicated than in the

linear regression case. This is because the linear mixed-effects model (LMM) allows

for relaxing of either the homogeneic variance or independence assumptions that are

present in the linear regression model. This can be seen directly from linear effects

model, which, for one sampling block, is written as:

Yi = Xi · β + Zi · bi + εi (2.4)

where Yi is ni×1 vector of responses, Xi is a fixed ni×p design matrix for the fixed-

effects with corresponding parameters β, Zi is a ni × g matrix of known covariates

with subject-specific random effects bi, assumed to be have a null mean and variance

G. The vector εi is an error term, assumed to have a multivariate normal distribution

with null mean and variance σ2 ·R so that the matrices G and R are the g × g and

ni× ni covariance matrices of bi and ε, respectively. Furthermore, it is also assumed

that bi and εi are independent. Also, it will be convenient to note that the variance

of Yi is Zi ·G · Z′i + σ2 ·Ri, which can be denoted as σ2 ·Vi

Often times researchers do not consider all of the elements of Vi to be unknown.

Rather, certain structures are chosen to obtain a parsimonious error structure. These

error structures only have a relatively few parameters and are relevant to a particular

design. This not only aids in estimation, as there are only a few covariance terms to

be estimated, but allows researchers to ensure that the covariance structure matches
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the experimental design of the study. One common covariance structure is compound

symmetry, which assumes all observations in a block have the same pairwise variance.

This type of error structure is commonly used in cluster-randomized trials so that

each sampling unit in a cluster will be related to each other, but independent of a

sampling unit from another cluster. An autoregressive structure is commonly used in

longitudinal trials where the relationship between observation is expected to decrease

as observations become further removed from each other. Verbeke and Molenberghs

(2000) discuss these structures in further detail.

Combining across all blocks, the linear mixed-effects model is written as:

Y = X · β + Z · b + ε (2.5)

where X = (X′1,X
′
2, ...,X

′
n)′, Y = (Y′1,Y

′
2, ...,Y

′
n)′, Z = (Z′1,Z

′
2, ...,Z

′
n)′ and ε =

(ε′1, ε
′
2, ..., ε

′
n)′. The quantities b and ε are random effects that are assumed to be

marginally independent and have variance Z·G·Z′ and σ2 ·R, respectively. Therefore,

the overall variance, V, is the sum of the variances of each of the random effects, or

Z ·G · Z′ + σ2 ·R. A further discussion of the mixed-effects model can be found in

Verbeke and Molenberghs (2000).

Just as in the linear regression model, the LMM model can be augmented to reflect

model selection. This model can be represented as:

Y = X1 · β1 + Z1 · b1 +X2 · β2 + Z2 · b2 + Λ · γ (2.6)

where, just as in the linear regression model, X1 is a n × p1 design matrix of fixed-

effects not subject to model selection and the parameters, β1, will always be esti-

mated. The matrix of fixed-effects X2 is a n × p2 is a set of covariates subject to

model selection, and the regression parameters β2 may be estimated or set to zero de-

pending on the result of the model selection procedure. The vectors Z1 ·b1 and Z2 ·b2
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are partitions of Z ·b in (2.5) such that the former is not subject to selection and the

latter can have elements of b2 set to a constant zero, thus resulting in the correspond-

ing variance parameters in G being set to zero. The matrix Λ=(ε(1),ε(2),...,ε(R)) is a

set of error terms each having a multivariate normal distribution with null mean and

unique covariance structure. The variance of ε(r) is σ2 ·R(r) (r=1,2,...R). The vector

γ is a column of the identity matrix that is used to select an appropriate ε(r), so that

if a data-driven model selection procedure favors the ε(r), γ̂ will be the rth column of

the identity matrix.

Model selection with LMMs can proceed in one of three fashions: fixed-effects

selection, random-effects selection, or covariance-structure selection. In fixed-effects

selection, it is assumed that Z2=0 and r=1, so that only the parameters that cor-

respond to the hypothesis set are subjected to model selection. Conversely, X2 can

be set to 0 and r be set to 1 so that the elements of b2, and hence the covariance

parameters in G2 can be determined by a model selection procedure by selecting the

appropriate Z2 matrices, resulting in random-effects selection. Both Z2 and X2 can

each be set to 0 so that covariance structure selection is performed. These selection

types often occur simultaneously so that, in practice, fixed-effects, random-effects,

and covariance structure selection occur simultaneously.

Model selection strategies for LMMs have been proposed that take the complex-

ities of the LMM into account. However, these strategies are less common in LMMs

than in the linear regression model. A best-subsets strategy remains a tenable model

selection strategy, particularly for random-effect and covariance structure selection

as the number of covariance structures considered are typically small. Information

criteria have received much interest as a metric because of their optimal statistical

properties. These metrics can be adjusted for any of the three selection types possible

in LMMs and for any type of estimation procedure. For example, when using residual

maximum likelihood (REML), the REML likelihood can be used in the information
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criteria to focus on random effect selection, while the full-likelihood can be used for

fixed-effect or the combined fixed- and random-effect selection. Since information

criteria are so highly regarded, the various different information criteria remains too

numerous to sufficiently discuss in this work. Dimova et al. (2011) and Vallejo et al.

(2010) assess the performance of some of the common information criterion developed

for LMMs.

The different types of model selection procedures in LMMs and the co-dependence

of the fixed- and random-effects in estimation makes model selection tricky at best;

thus, most model selection procedures in LMMs are ad hoc. Cheng et al. (2010) pro-

vide an overview of model selection strategies for LMMs. Littell et al. (2006) discuss

various likelihood and information criteria that can be used for model selection in

LMMs. For both fixed- and random-effect selection, Verbeke and Molenberghs (2000)

recommend searching for a covariance structure using the all the variables in the se-

lection and hypothesis sets. Then, using a metric such as the AIC, they recommend

performing a backwards selection procedure on the fixed-effects holding the covari-

ance structure fixed. Other complex and computationally intensive algorithms have

been developed for LMMs, such as extending the LASSO model (Foster et al. (2009))

and model averaging (Ibrahim et al. (2011)).

A discussion of how these strategies affect post-model selection estimation and

inference is even less developed than the discussion of model selection strategies in

LMMs. One difficulty in discussing this topic is that it is known that misspecifiying

the covariance structure can result in higher than nominal Type-I errors and smaller

than nominal coverage probabilities (Gurka et al. (2011)). Another complexity in

assessing these quantities is that inference can be made conditionally or marginally

on the random effects Z · b. These two different inferential strategies have differ-

ent interpretations and differences in model selection criteria (Vaida and Blanchard

(2005)) which can have impacts on the selected variance structure, and ultimately,
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inference.

Prior to discussing how model selection impacts the estimation of the variance

and its effect on the Type-I error in LMMs, an important restriction must be made.

For any work considered here, it is assumed that both the structure and values of V

are known but the parameter σ2 is unknown. This restriction is made to reduce the

dimensionality of the variance parameters to one parameter that can be thought of

as a proportionality constant. Although the penultimate goal of this research is to

propose methodology to account for moodel uncertainty in LMMs for any unknown

variance structure, the lack of previous research would make this goal beyond the

scope of this dissertation. However, this work will study how misspecifying the values

of V will affect the post-model selection estimates and hypothesis test characteristics

with an eye on this future work. This restriction is the same as restricting the scope

of the work to covariance pattern models, as both Z1 and Z2 are set to 0.

This restriction will allow for closed form solutions of the variance estimates de-

termined by the generalised least squares estimators. Specifically, the generalised

least squares estimate for the fixed-effect parameter vector after model selection is

β̂M̂=
(
X′
M̂
·V−1 ·XM̂

)−1
X′
M̂
· V−1 · Y, where XM̂ is the final design matrix after

model selection. The vector β̂ has a variance σ2
(
X′
M̂
·V−1 ·XM̂

)−1
. When the value

of σ2 is unknown, the generalised least squares estimate of the residual variance, σ̂2,

can be used in place of σ2. This estimate can be written as σ̂2=
(Y−ŶM̂)

′
V(Y−ŶM̂)

N−pM̂
,

where ŶM̂=XM̂ · βM̂ and pM̂ is the number of columns in XM̂ . Both the residual

variance and the variance of the estimated parameter vector will be discussed further

in subsequent chapters.

2.3 Simulation Study

A simulation study was conducted to determine how inference is affected when

both model selection and inference are performed on the same dataset. Data was sim-

21



www.manaraa.com

ulated in the setting of (2.6) with Z2=0 and M=1 so that only fixed-effects selection

was performed. Ten time-independent covariates, or covariates that remain the same

for all observations within a block, were simulated from a normal distribution with

a mean vector 0 and covariance matrix Σ, where the (i,j) element of Σ is 0.5|i−j|.

Finally, to create a complete design matrix, the covariates were repeated and put

into blocks of size 4 and a column of ones were added as an intercept term. These

covariates were divided up so that the hypothesis set contained the intercept and the

first simulated covariate, while the selection set contained the other nine covariates.

For ease of discussion, this variable will be referred to as the focus variable since

variables analyzed in this manner are typically the focus of a study. The parameters

corresponding to the hypothesis set were simulated as β1 = 0 while the selection

set β2 was varied between the null vector 0 and (1,1,0,0,0,0,0,0,1)’, which will be

referred to as Case 1 and Case 2, respectively. The error term, ε(1), was simulated

from a multivariate normal distribution with null mean and a compound symmetric

covariance matrix with σ2=1 and ρ=0.25. The number of blocks varied between 20

and 40.

Rather than estimate the intraclass correlation value, ρ, this value was assumed to

be known and allowed to vary by increments of 0.02 so that the effect of misspecifying

the intraclass correlation coefficient can be assessed. The generalised least squares

estimates could be used to determine the fixed-effects estimate β̂ as well as the residual

variance σ̂2. For each simulated dataset, all 29 = 512 possible models were fit and, for

each model, the best model was determined by selecting the model corresponding to

the smallest AIC value. The AIC was computed using the true likelihood, as opposed

to alternatives such as the residual maximum likelihood and is attractive due to its

efficient nature as a model selection procedure. The parameter corresponding to the

focus variable tested for no significant effect (Ho:β1=0) versus a general, two-sided

alternative at an α = 0.05 significance level. The critical value from the z -distribution
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was used rather than the t-distribution so that all inference was made on the same

power function. This will enable the tests to be comparable even if the model degrees

of freedom differ. This process was repeated 1000 times for each combination of

simulation parameters. For each value of the intraclass correlation, the effect of model

selection bias and model uncertainty in estimating the focus variable parameter (β1),

σ2, the standard error of the estimate of β1 (cov(β̂1)) and the Type-I error rate was

assessed over all simulations. All simulations were performed in the IML environment

in SAS (V9.3).

In addition to the simulation paradigm presented above, simulations were ex-

tended that varied some of the conditions that were held fixed. This includes facto-

ing in the parsimony correction discussed previously, where a smaller model within

2 units of the information criterion metric is favored. The Bayesian Information

Criterion (BIC) was also used to show that using the AIC was not the root cause

of any issues with post-model selection inference. Two additional fixed-effect struc-

tures were investigated with these vectors having values β=(0,1,0,0,0,0,0,0,0,0,0) and

β=(0,1,1,1,1,0,0,0,0,0,1) so that the only difference between these two cases (Cases 3

and 4, respectively) is that the focus variable parameter is changed from zero to one.

Rather than assessing the Type-I error, the coverage probability of an asymptotic

confidence interval is assessed. The true intracluster correlation was also changed to

0.75 to assess the impact of this variable on any conclusions. The full results of all

the simulations can be found in Appendices A.1-A.4. Generally, these results are in-

variant to the simulation parameters and, in the cases where there is some variation,

the results are discussed in this section. Otherwise, these results will only be found

in the Appendices.

Figure 2.1 shows the results for the assessment of the bias in estimating the pa-

rameter of interest over the different sample sizes and simulation settings. Regardless

of the value of the intracluster correlation near the true value, the parameter estimate
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does not show significant bias across the simulation settings. This is an expected re-

sult that stems from the consistent property of the AIC metric. However, when the

true parameter vector contains non-zero terms and the value used for the intraclass

correlation diverges from the true value, bias in the fixed-effect parameter estimate

is introduced for small samples (Figure 2.1b). This bias reduces in magnitude as the

sample size increases (Figures 2.1c,d).

Interestingly, the characteristics discussed above change as a function of the true

value of the intracluster correlation, as can be seen in Figure 2.2. When the true

intracluster correlation is set to 0.75, the mean of the parameter estimate over all

simulations seems to be consistently smaller than the true value. The observed bias

is present regardless of the intracluster correlation used in estimation and diverges

from the true parameter value when the model intracluster correlation tends to the

upper limit (Figures 2.2a,b). This is an unexpected result that is not present when the

true fixed-effect parameter is non-zero and disappears when the sample size increases

(Figures 2.2c,d).

The bias in estimating the residual variance σ2 can be seen in Figure 2.3. The

generalised least square estimates of the residual variance underestimate the true

value, regardless of simulation template used. Even though this bias is small in size,

there is a consistency in the results evidenced by the very narrow 95% confidence

intervals that surround the mean values. These confidence bounds are so narrow the

melt together with the mean value. This bias decreases somewhat for larger sample

sizes (Figures 2.3c,d), but the true value still remains outside of the confidence bounds.

This result was expected in light of the previously cited literature. Regardless of the

sample size or simulation template, the estimate of σ2 becomes wildly inaccurate

when the model intraclass correlation tends to the upper limit.

Prior to assessing how ignoring model selection uncertainty affects the Type-I

error, the bias in the standard errors of the parameter estimates were compared to
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Figure 2.1: Simulation results from estimating the fixed-effect parameter of interest
with ρ=0.25. The jagged solid line depicts the mean fixed-effect estimate over all sim-
ulations while the dashed-line represents 95% confidence bounds. The dot represents
the true simulated value. The true value of the fixed-effects parameter falls within
the confidence bounds for reasonable values of the intracluster correlation value.
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Figure 2.2: Simulation results from estimating the fixed-effect parameter of interest
with ρ=0.75. The jagged solid line depicts the mean fixed-effect estimate over all sim-
ulations while the dashed-line represents 95% confidence bounds. The dot represents
the true simulated value. The true value of the fixed-effects parameter falls within the
confidence bounds for reasonable values of the intracluster correlation value, although
not as justifiably when ρ=0.25.
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Figure 2.3: Simulation results from estimating σ2 without adjusting for model un-
certainty (ρ=0.25). The nonlinear solid line depicts the mean estimate of σ2 over all
simulations while the dashed-line represents 95% confidence bounds. The 95% con-
fidence bounds are so small in some cases that they may be indistinguishable from
the mean value. The dot represents the true simulated value, and falls outside of the
confidence bounds for all situations.
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the simulated values. Because the simulation study was not conditioned on a fixed

set of covariates, the standard error of the fixed-effect parameter estimates varied

between the simulations. The value of the standard error, estimated from the variables

recommended from the model selection procedure, was subtracted from the similar

quantity using the variables that had a just the truly non-zero coefficients. This

difference is shown in Figure 2.4. There is a general upward bias in the standard errors

compared to the true value (Figures 2.4a,b). This is somewhat expected because the

AIC tends to favor models with a larger amount of fixed-effects over smaller models.

The additional covariates in the final model will have the effect of increasing the

overall variance of the parameter estimates (Figures 2.4b,d). This effect is somewhat

tempered by increasing the sample size since the estimated model is typically closer

to the true model as the asymptotic limit is reached (Figures 2.4c,d). One surprising

result from this study is that these values are not robust against the value of the

intraclass correlation used for the analysis, so that if a poor estimate of the intraclass

correlation is used, the variance of the parameter estimates will be very different from

the true value.

The Type-I error rates resulting from the simulations can be seen in Figure 2.5.

As expected, the Type-I error rate is higher than the nominal level of 0.05 when

intraclass correlation used for estimation is smaller than that of the simulated value,

regardless of the sample size. Furthermore, hypothesis tests become too conservative

when the intraclass correlation used is much greater than the true value. However,

for small samples and intraclass correlation values close to the true value (Figures

2.5a,b), the estimated Type-I error is nearly twice the nominal value, indicating that

the hypothesis test after model selection is quite liberal with respect to the nominal

significance level. An increased sample size tempered this relationship somewhat

(Figures 2.5c,d), but inflated Type-I error rates persisted for reasonable inctracluster

correlation values. The extent of this bias is somewhat surprising judging by the
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Figure 2.4: Simulation results from estimating the standard error in β1 without ad-
justing for model uncertainty (ρ=0.25). The quantity shown is the difference between
the estimate of the standard error as if the true model were known and that which
was estimated through a model selection procedure. The nonlinear solid line depicts
the mean estimate of the standard error over all simulations while the dashed-line
represents 95% confidence bounds. The dot represents the true simulated value. The
standard error after model selection is typically an overestimate due to overfitting.
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results shown in Figures 2.1 and 2.4. If the fixed-effect estimate for the focus variable

is somewhat unbiased and the standard error shows an upward bias, it would be

expected that the ratio of these values would reslult in the opposite conclusion; that

the resulting test would show a conservative bias. However, this is not shown as the

results agree with previously cited literature for independent response variables.

2.4 Cervical Radiculopathy Clinical Trial

As introduced in Chapter 1, a clinical trial was conducted to assess the use of

cervical traction for patients diagnosed with cervical radiculopathy. A detailed de-

scription of the conduct of the study can be found in Young et al. (2010). Each

treatment arm received a standard of care regimen of manual therapy and exercise.

The patients in this trial were randomized either to a group that was given the full

traction treatment, which consists of applying an upward force on the neck in order

to stretch out the spine, or a control group. The control group was given a sham

traction procedure, where minimal force was applied. Outcomes were measured 2

and 4 weeks after physical rehabilitation began, as well as at baseline.

The original study presented “unadjusted” and “adjusted” mean differences of all

outcomes between the treatment groups at 2 and 4 weeks. The adjustment that the

authors mention pertains to any intra-subject variation included as part of the LMM

that was used for the primary analysis. For prospective studies, this assumes that all

other factors that may have influence on the outcomes were controlled for through the

randomization process. However, there is the potential for this assumption to be false,

potentially resulting in potentially biased estimates due to the omission of factors such

as baseline levels, demographic information or other treatment characteristics. After

adjusting for these variables, the effect of the cervical traction procedure may be

different than the effect estimated without adjusting for these variables. This may be

due to poor randomization or a relationship between these variables and the treatment
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Figure 2.5: Simulation results from estimating Type-I error rate (ρ=0.25). The jagged
solid line depicts the mean estimate of the standard error over all simulations while the
dashed-line represents 95% confidence bounds. The dot represents the true simulated
value. The Type-I errors are typically greater than the nominal value, indicating
liberal hypothesis tests.

31



www.manaraa.com

variable.

An analysis that adjusts for the intra-subject variation as well as other potential

explanatory predictors was completed on the 2 and 4 week measurements. The LMM

is able to accommodate a model that considers baseline, 2 and 4 week outcomes as a

response variable, however, this was not done in this analysis to ensure the paramter

estimates each have a clear meaning. The Neck Disability Index (NDI) is used for

the response variable presented in this work, although any of the outcomes could be

used if the assumption of the normally-distributed error terms is appropriate. This

measure is a score between 0 and 50, with higher values reflective of more severe

injuries.

Potential explanatory variables included the demographic variables (age, sex,

BMI), baseline injury characteristics (baseline NDI, baseline Numeric Pain Rating

Scale, previous occurrence of symptoms, duration of symptoms, whether the injury

was work related, Fear Avoidance Belief Questionnaire score (FABQ) (2 and 4 week),

bothersome symptoms (pain, numbness), treatment characteristics (treatment group,

number of treatments) and design variables (time of measurement). The Numeric

Pain Rating Scale is a measure of pain ranging in [0,10], with higher scores indicative

of more pain. As its name suggests, the FABQ score represents fear and avoidance

and has a range in [0,96]. Only patients who have completed the full 4-week treatment

regimen and have no missing values for any of the covariates were considered for this

study. Of the original 81 patients who were randomized, 68 had no missing values and

were included in the analysis. Forty patients (59%) were in the group treated with

the neck traction and 28 (41%) received the sham traction treatment. A summary

of all the variables, including NDI, can be seen in Table 2.1. Marginally, there are

no significant differences between any of the treatment groups, although, nominally,

the treatment group tended to have higher NDI and FABQ scores and more previous

symptoms, indicating that this group may contain patients with more severe injuries.
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Sham
Variable Traction (n=40) Traction (n=28) Overall (n=68)

Age (y) 47.6 (9.0) 47.4 (9.8) 47.5 (9.3)
BMI (kg/m2) 29.9 (6.3) 28.8 (6.0) 29.4 (6.2)
Sex (n,%)
Male 12 (30) 8 (29) 20 (29.4)
Female 28 (70) 20 (71) 48 (70.6)

Previous Symptoms (n,%)
Yes 11 (28) 12 (43) 23 (33.8)
No 29 (72) 16 (57) 45 (66.2)

Duration of symptoms (n,%)
< 3 weeks 9 (20) 6 (21) 15 (22.1)
≥ 3 weeks 31 (80) 22 (79) 53 (77.9)

Work Related Injury (n,%)
Yes 8 (20) 4 (14) 12 (17.7)
No 32 (80) 24 (86) 56 (82.3)

FABQ1 (2 week) 40.5 (22.9) 35.1 (19.8) 38.3 (21.7)
FABQ1 (4 week) 34.3 (23.0) 29.7 (19.3) 32.4 (21.5)
Baseline Pain2 22.3 (10.3) 20.0 (9.0) 21.3 (9.8)
Bothersome Pain (n,%)
Yes 32 (80) 24 (86) 56 (82.4)
No 8 (20) 4 (14) 12 (17.7)

Bothersome Numbness (n,%)
Yes 11 (28) 7 (25) 18 (26.5)
No 29 (72) 21 (75) 50 (73.5)

Number of Treatments 7.0 (2.2) 6.8 (1.7)
NDI3 (Baseline) 19.9 (8.2) 18.0 (7.6) 19.2 (8.0)
NDI3 (2 weeks) 15.9 (8.3) 13.7 (7.2) 15.0 (7.9)
NDI3 (4 weeks) 13.5 (9.3) 11.9 (7.6) 12.8 (8.6)

Table 2.1: Summary of Variables in Cervical Radiculopathy Trial: 1 Range of scores
0-96, higher levels of FABQ represent higher levels of fear avoidance: 2 Range of
scores 0-10, 0=No pain, 10=Worst Pain Imaginable: 3 Range of scores 0-50, higher
levels of NDI represent more severe injuries
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A reference cell parameterization was used for the categorical variables. Females,

patients without pain as their most bothersome symptom, patients without numbness

as their most bothersome symptom, patients without previous symptoms, patients

without work related injuries, patients with symptom duration less than 3 weeks and

the discharge time point were chosen as reference cells. Using the previously defined

language, the model intercept, treatment group, time of measurement and the inter-

action of treatment group and time of measurement made up the hypothesis set so

that inference is always be made on these variables. The selection set consisted of all

of the other variables. It is assumed that the structure of the variance within an indi-

vidual, Vi, is known up to a constant. The matrix Vi was taken to be the correlation

matrix determined using maximum-likelihood estimation of the final model.

Prior to the model selection procedure being applied, each of the variables were

screened using a LMM adjusting for the intra-subject variation and the time of the

NDI measurement. For each of these models, the variance was fixed at 0.7286, which

is the maximum-likelihood estimate of the model with only an intercept and time in

the model. The results of the screening can be seen in Table 2.2. The FABQ scores,

baseline pain index, having bothersome pain, and baseline NDI were all significantly

related to the the 2 and 4-week post-treatment NDI score (P<0.05). The treatment

group was not significant at either of the time points.

A best-subsets strategy using the AIC was used to find a final model. After

applying this procedure, a patient’s age, sex, the duration of previous symptoms, and

whether pain was a bothersome symptom were not included in the final model. Just

as in the screening analysis, the elements of V were assumed to be known using the

maximum likelihood estimate of the final model (0.5238). The parameter estimates,

standard errors (SEs), p-values from a hypothesis test that the parameter is null-

valued and 95% CIs from this model can be seen in Table 2.2. Of the variables included

in the final model, only baseline NDI, FABQ and the number of treatments were
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significantly related to NDI. The patients having a more severe injury at baseline and

higher fear avoidance beliefs were more likely to have a higher NDI at the 2 and 4 week

follow-up time points while patients that had more visits to the physical rehabilitation

service had better injury outcomes. None of the variables in the hypothesis test were

significantly related to the NDI score. An omnibus test for no effect of the cervical

traction, which was a compound test of both of the parameters corresponding to

the treatment group and the treatment group and time interaction, had a p-value of

0.873, indicating a lack of evidence that cervical traction has an impact on the post-

treatment NDI score. The results of this analysis agree with the study conclusions

from Young et al. (2010) with respect to the effect of traction procedure.

Estimates of the effect size for each of the model effects are given in the last

column of Table 2.2. These effect sizes are calculated using the z-statistic from the

hypothesis test and provides an estimate of Cohen’s d effect size, calculated as 2·|z|√
df

where z is the test statistic and df is the model degrees of freedom, which, for the

cervical radiculopathy analysis presented, is 136−12 = 124. The effect sizes are often

difficult to interpret, but a standard metric for these type of effects sizes states that

an value of d < 0.3 signifies a small effect, 0.3 ≤ d < 0.8 represents a medium effect

and d ≥ 0.8 represents a large effect, although these guidelines can vary by discipline.

Lastly, estimates and 95% CIs of the NDI scores at the 2 and 4 week follow up

visits were computed separately for each treatment group. These quantities were

calculated using the overall mean values shown in Table 2.1. The mean NDI score

for the cervical traction group at 2 weeks post-treatment was found to be 14.8 (95%

CI: 12.3, 17.2) while the control group had a mean score of 14.2 (95% CI: 11.7, 16.6),

which has a difference in NDI of 0.6 (95% CI: -1.8, 3.0). At 4 weeks post-treatment,

the mean NDI for the cervical traction group decreased to 13.3 (95% CI: 10.9, 15.8)

while the mean NDI score for the control group was 13.2 (95% CI: 10.8, 15.6), for a

mean difference of 0.1 (95% CI: -2.3, 2.5). The interpretation of these quantities are
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similar to the results published by Young et al. (2010), although the magnitude for

all of the mean values are nominally larger than those reported Young et al. (2010).

The predicted differences are much smaller in the adjusted analysis presented here.

This study, along with the results from Young et al. (2010), give evidence that the

addition of cervical traction may not be effective in treating cervical radiculopathy.

Furthermore, the results from this were able to adjust for the longitudinal design of

the study as well as the covariates included in the final analysis. Researchers could

use these results to plan studies to evaluate other novel interventions for cervical

radiculopathy. Consider a novel intervention that, when applied with the standard

of care therapy, aims to reduce the NDI by 25% after 4 weeks compared to a similar

group treated with the just the standard of care. Using the study discussed previously

as a guide, the researchers would be trying to show that the novel therapy reduces

NDI by 1.58 units and would assume a standard deviation of 4.92. Assuming a Type-I

error of 0.05 and using a 2-sided t-test, this new study would require 154 patients

per group to achieve 80% power. However, the simulation results indicate that the

residual variance is typically underestimated, which would result in this study being

under-powered.

2.5 Discussion & Conclusions

This chapter has summarized some of the issues that result from performing post-

model selection inference and ignoring model uncertainty. Specifically, the literature

cites many instances where variance estimates show downward bias and Type-I error

rates are higher than the nominal level in cases where the response variable can be

considered independent. Similarly, coverage probabilities are lower than the nominal

value when the regression parameters are non-zero. A statistical representation of the

model used in model selection was extended to the correlated data case.

A simulation study showed that the problems that are present when the response
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variable can be considered independent persist when this assumption is no longer

valid. Further simulations show that these results are robust against other informa-

tion criteria (BIC), the use of the parsimony correction and other intraclass correlation

values (ρ=0.75). When the variable of interest was non-zero, the coverage probabil-

ities of 95% confidence intervals for the parameters in the hypothesis set were lower

than the nominal value.

Overall, these results show and inflated effect size of each of the parameters,

resulting in the increased expectation that a test of the parameter corresponding to

the focus variable has a relationship with the response when, in truth, it may not

be. This agrees with the argument put forth by Ioannidis (2008). Additionally, these

results agree with the previously published literature using the linear regression model

where the response variable can be considered independent. This is not a surprising

result, as the linear regression model is a special case of the LMM.

The results from the simulation study are assumed to extend to other situations

not discussed here. These include time-dependent covariates, or when the observa-

tions within a block vary, the inclusion of random effects and different covariance

patterns. It is expected that the problems of post-model selection inference extend to

other complex models such as longitudinal models and hierarchical models with more

complex variance structures. It is also assumed that the problems of post-model

selection inference extend to situations where model selection is performed on the

covariance structure, either with or without model selection being performed on the

regression parameters. These situations must be explored individually and confirming

this extension remains an open topic of study so the generalizability of these results

to other situations is only based on an educated conjecture.

The simulation study was limited by the fact that the form, or structure, of the

of the covariance matrix was considered known. This choice was made so because

it is beyond the scope of this work to assess how the covariance parameters behave
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in the presence of model uncertainty. However, the effect of misspecification of the

intraclass correlation value was observed. In practice, this value is estimated and not

known. It is unknown how the data driven model selection procedures impact the

estimation of the parameters belonging to the covariance structures. However, even

for reasonable estimates of these parameters, this study has shown that the there is

most likely serious consequences of using post-model selection inference.

The results from a trial on patients with cervical radiculopathy were extended from

Young et al. (2010) to adjust for potential differences in several predictor variables.

These predictor variables were subjected to a model selection procedure to potentially

reduce the effects of biased parameter estimates from a misspecified model. The

model suggested from the model selection procedure will be used in in an evaluation

of future methodological work. This model was also used to perform a power analysis

for a future study. Since this power analysis was based upon the post-model selection

standard deviation which, according to the simulation study, it likely underestimates

the true standard deviation and does not take into account model uncertainty.

As mentioned previously, little work has been done in this area to propose methods

to account for model uncertainty in linear mixed-effect models. For LMMs, one

potential solution is to extend Ye (1998) by using the generalised degrees of freedom

for linear mixed-effect models calculated by Zhang et al. (2012) to achieve a better

estimate of the variance will be presented in the following chapter. Shen et al. (2004a)

is extended to inflate the covariance matrix of the fixed-effect parameter estimates to

achieve tests that are closer to the nominal level. These results will allow statisticians

and researchers to be able to incorporate some degree of model uncertainty into their

results.

Not only are the results from a study using model selection strategies impacted by

the previously discussed biases, but future studies can also be affected. In practice,

the variation of the response variable is the most difficult thing to quantify, both for
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clinicians and statisticians. Using previously published results is an efficient way of

estimating this variation. However, if the estimates of the variation are underesti-

mated in the published literature, and these results are used in power analysis, the

variability seen in the study will be higher than expected. This could result in a study

that may not have sufficient power to achieve its goal, leading to the shelving of a

promising treatment. As the simulations show, the true variance is generally higher

than the post-model selection estimate. This means that the hypothetical study pre-

sented will most likely require more than the 308 total patients to achieve the power

the 80% power that is expected.
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CHAPTER III

Adjusting for Model Uncertainty in Variance

Estimation

In order to adjust the parameter estimates for model uncertainty, a theoretical

view of how these quantities behave must be explored. This chapter will propose a

model selection paradigm to allow the behavior of both the fixed-effect and residual

variance estimates to be studied. Following this exploration, the concept of gener-

alized degrees of freedom (GDF) and its application to estimating the variance will

be introduced. The concept of GDFs was originally proposed by Ye (1998) for ad-

justing linear regression models for model uncertainty. Zhang et al. (2012) extended

this concept to LMMs, but used a different derivation for its use in adaptive model

selection. This method is adapted for calculating the post-model selection estimate

of the residual variance and will be evaluated with extended results from the simula-

tion initially shown in Section 2.3. The application of this technique to the cervical

radiculopathy trial will be presented and, finally, the conclusions and limitations of

using the GDF in variance estimation will be discussed.

Some of the notation in this section was originally defined and used by the afore-

mentioned authors. For clarity purposes, an effort was made to be as consistent as

possible with these works.
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3.1 Properties of Post-Model Selection Estimators

As the simulation study in the previous chapter demonstrated, there are issues

with using the same data to select and make valid statistical inference. This strat-

egy often results to overfitting, leading to biased estimates of the residual variance

and undesireable properties of the hypothesis tests. More importantly, this strategy

ignores the uncertainty in the underlying model that initiated the use of the model

selection strategy. In order to adjust for model uncertainty, it is first necessary to

understand the behavior of the estimates when the underlying model is uncertain.

The selection set in (2.6) can be further partitioned as X2=(X2,Mo ,X2,MC
o

), so

that X2,Mo represents the variables corresponding to parameters with non-zero val-

ues and X2,MC
o

contains the variables corresponding to null-valued parameters. The

parameter vectors for the partitioned parameter matrix are β2,Mo
and β2,MC

o
, respec-

tively. It is assumed that the model selection procedure will either restrict the models

considered to only those containing (X1,X2,Mo), or will include (X1,X2,Mo) nearing

probability one. This paradigm restricts the scope of model selection to only cases

where the variables corresponding to non-null parameters are included in the final

estimated model. Consistent and efficient model selection, present in the BIC and

AIC, respectively, can be thought of examples of such a strategy as the probabil-

ity of achieving an optimal model converges to unity as the sample size increases.

This paradigm allows an investigation into the properties of the post-model selection

estimators.

To illustrate this concept, consider a model where Y=βo + x1 · β1 + ε is the

true, but unknown, model. In addition to the vector x1, the vector x2 is considered

a potential explanatory variable that has no relationship with the response, thus

having a regression parameter of 0. In this example, the vector of ones corresponding

to the intercept is the hypothesis set, X2,MC
o

consists of x2 and X2,Mo consists of

x1. The aforementioned restriction will prohibit the model Y=βo + x2 · β + ε or an
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intercept-only model from being considered since it does not contain x1. The model

Y=βo + x1 · β1 + x2 · β2 + ε is considered only if the estimation method produces an

unbiased estimator of the parameters. It goes without saying that the true model is

considered in this paradigm. With this paradigm, Mo will be referred to as the true

model, understanding that this is a set of models. Its complement is referred to as

MC
o .

Theorem 3.1 discusses how the use of a model selection procedure affects the

fixed-effect estimates:

Theorem 3.1. In the setting of (2.5), (2.6) and the previous partitioning of both

the selection set and the model space, let β̂M̂ be the generalised least squares esti-

mator on the recommended final model from the model selection procedure. Then,

E(limn→∞ β̂M̂) = β. Furthermore, E(β̂M̂) = β if X2,MC
o

= 0.

This result is expected due to the consistent or efficient nature of the model

selection procedure. However, it is important because if Theorem 3.1 is not true

and the resulting expectation of the fixed-effects parameter estimates were biased,

then the generalised least squares estimate of the residual variance is inaccurate.

The generalised least squares estimate of the residual variance is the mean square

error (MSE) of the predicted values and it is well known that the MSE degenerates

to a variance and squared bias term. Thus, if the parameter estimates, and hence

predicted values, have a bias that was non-zero, a biased estimate of the residual

variance would be obtained. However, since the fixed-effect parameter estimates are

unbiased, the residual variance has clear meaning.

The order of the expectation operator and limit in the result of Theorem 3.1 may

be transposed depending on the how the model uncertainty is quantified. Transpos-

ing these quantities makes the limit superfluous, so the fixed-effect estimates can be

unbiased regardless of the sample size, as opposed to asymptotically unbiased. How-

ever, this is due to the particular paradigm of accounting for model selection that
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was discussed. Theorem 3.1 is true for any consistent or efficient model selection

procedure. Further information regarding this derivation can be found in Appendix

B.1. Lemma 3.2 adds to the behavior of the post-model selection estimates of the

fixed-effects.

Lemma 3.2. Under the conditions of Theorem 3.1, the generalized least squares

estimate of the fixed-effects after model selection, β̂M̂ , has an asymptotic multivariate

normal distribution with mean β and variance Σ.

Lemma 3.2 follows directly from Theorem 3.1. The proofs for Theorem 3.1 and

Lemma 3.2 are straightforward extensions of Shen et al. (2004a) and hinge on the

assumption that the variance V is known. If the response vector, design matrices and

error term are pre-multiplied by V−
1
2 , where V−1=V−

1
2 · V− 1

2 , then the conditions

found in Shen et al. (2004a) are met. More details of this work can be found in

Appendix B.1.

Lemma 3.2 has two distinct implications. First and foremost, the results of this

lemma allow for inference and construction of confidence intervals using the gener-

alised least square estimates and standard multivariate distribution theory. Second,

it conflicts with work from others that claim the post-model selection distribution of

the parameter estimates is not multivariate normal and cannot be known. However,

these works focus on model selection procedures that allow for consideration of all

models. Only a set of the true models is considered in the framework introduced

previously, so that the asymptotic normality that results from Lemma 3.2 holds.

Even though the fixed effect estimators are asymptotically unbiased, not all pa-

rameter estimates in the LMM have this property. As Theorem 3.3 states, the esti-

mator of the residual variance is not unbiased.

Theorem 3.3. After a model selection procedure performed under the conditions

found in Theorem 3.1, the expected value of the estimate of the residual variance
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estimated by the generalised least squares estimator will be no less than the expectation

of the residual variance estimate if the true model is known. That is, E(σ̂2
M̂

) ≥

E(σ̂2
Mo

)=σ2. If the true model is known, or if there are no covariates that are unrelated

to the response, then the generalised least squares estimate will be unbiased. This is

stated as: X2,MC
o

=0, then E(σ̂2
M̂

)=E(σ̂2
Mo

)=σ2.

Theorem 3.3 states that even though the expectation of the fixed-effects estimates

are unbiased, the expectation of the variance does not necessarily retain this quality.

From a philosophical point of view, Theorem 3.3 says that model uncertainty has

a cost in that the results derived from a model that is not known to be true are

less certain than a model that is known to be correct. In both linear regression

models and LMMs, this uncertainty is captured in the parameter σ2. As mentioned

previously, researchers rarely know the true model but often make inference and

construct confidence intervals as though the true model is known. In view of Theorem

3.3, these inferences and confidence intervals are biased so that they reflect smaller

variability. Furthermore, the simulation results in the previous chapter show that σ̂2

underestimates σ2 due to overfitting. This bias could be eliminated if the results were

adjusted for model uncertainty. The corrected variance estimate could potentially be

an unbiased estimator for the variance if the underfitting was adjusted appropriately.

The proof of Theorem 3.3 can be found in Appendix B.2.

3.2 Generalized Degrees of Freedom

The concept of generalized degrees of freedom (GDF) was first developed byYe

(1998), although similar concepts were discussed by Efron (1986) and Girard (1989).

With a similar motive as this work, the goal of Ye (1998) was to account for model

selection in the estimate of the residual variance σ2 in a linear regression model. This

work used a fortuitous relationship between the derivative of the predicted values with
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respect to the responses and the projection, or “hat” matrix. Using this definition,

this work was able to define the GDF as “...the sum of the average sensitivities of

the fitted value µ̂i(Y) to a small change in yi. Thus it measures the flexibility of

the modeling procedure M.” This definition was used in the linear regression setting

to produce an estimate of σ2 adjusting for model uncertainty and was accomplished

by replacing the model degrees of freedom p with the value of the GDF. Since the

GDF is typically larger than the number of parameters, this resulted in an inflated

estimate of the residual variance that is indicative of the result from Theorem 3.3.

As stated in Ye (1998), the definition of GDF is advantageous for two reasons.

First, flexible models, or models whose predicted values would not be sensitive to

small changes in the response variable, would have relatively small GDF and models

that that were very sensitive to small changes in the response would have large values

of the GDF. Thus, the GDF is a measure of the flexibility of the modeling procedure

and of model fit. Inflexible, poor fitting models would result in high values of the

GDF and the confidence intervals resulting from these models would be much wider

than the similar intervals for flexible models. The other major advantage is that,

through distribution theory, a simple relationship between certain model quantities

and the GDF could allow for conceptually simple estimation methods. The estimation

method developed by Ye (1998) is known as the perturbation method. An explanation

and extension of this estimation method will be discussed in the following section.

The GDF defined by Zhang et al. (2012) was meant to minimize the Kullback-

Leibler distance through optimizing the penalty term. This differs from the formula-

tion proposed by Ye (1998) that relates the GDF to the derivative of the predicted

values with respect to the observed responses, which is stated as:

DM =
∑
i,j

hMij =
∑
i,j

∂ E (µ̂ij)

∂yij
(3.1)

where DM is the GDF value and the quantity hMij will be referred to as the generalized
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leverage for the jth observation from block i. For the generalised least squares estima-

tors, the predicted values µ̂ij and the residual variance estimate σ̂2 are both functions

of the response vector Y. Except in a some special case scenarios, the predicted

response is a function of the unknown elements in V, which in turn, are functions

of Y. The relationship between a single response and potentially many elements of

V is a monumental task that will be dependent on the estimation method for the

elements of Vi as well as the structure of Vi. Rather than assess the predicted val-

ues with respect to the observed responses, consider a similar definition of the GDF

that assesses the predicted values with respect to the unknown true value µij. Then,

Definition 3.4 can be used as an extension of the GDF proposed by Ye (1998) for

LMMs.

Definition 3.4. For LMMs, the generalized degrees of freedom (GDF) of the model

can be represented as:

DM =
∑
i,j

hMij =
∑
i,j

∂ E (µ̂ij)

∂µij
(3.2)

where hMij is the diagonal element, or leverage, of the hat matrix for the jth observed

value from block i and yij is the value of the corresponding observed response variable.

The quantity µ̂ij is the predicted value using the generalised least squares estimator

of the fixed-effect parameters.

Rather than keep the GDF in terms of the notation in Definition 3.4, the formula-

tion of the LMM can be used for the predicted values to achieve a quantity enables a

more efficient estimation. In the LMM discussed in Chapter 2, Definition 3.4 results

in Theorem 3.5:

Theorem 3.5. The GDF for the LMM model is defined by DM=
∑
i,j

hMij , where:

hMij =
1

σ2
E
(
µ̂ij · (Yi − µi)

′ ·V−1i · ej
)

=
1

σ2
cov

(
µ̂ij, (Yi − µi)

′ ·V−1i · ej
)
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with µi=E(Yi) and ej as the jth column of the identity matrix with dimension ni.

The proof of Theorem 3.5 could be extended to covariance pattern models by

pre-multiplying the LMM equation by V−
1
2 and proceeding with already established

proofs. However, neither Ye (1998) or Shen et al. (2004a) offer much detail on these

derivations. A more detailed explanation can be found in Appendix B.3. Theorem

3.5 can be shown to degenerate to the GDF defined by Ye (1998) when the response

variable can be considered independent.

The concept of GDF was furthered developed by Efron (2004) and Weisberg

(2005), primarily for use in adaptive model selection. Adaptive model selection is

related to the the information criteria discussed in the previous section, however, it

assumes that the optimal penalty c is unknown and to be estimated from the data.

This leads to the adaptive model selection criterion, − logL+ ĉ ·K, where, as previ-

ously defined, logL is the logarithm of the likelihood function and K is the number

of parameters in the model. Zhang et al. (2012) extended the definition of the GDF

to estimate ĉ in the LMM and finds that when used as a model selection strategy, the

resulting models have smaller Kullback-Leibler distance than AIC or BIC, meaning

that the predictions are closer to the response variable. Further, the adaptive selec-

tion procedure generally is as good as or better than the commonly used methods

both in terms of the number of correctly and incorrectly entered variables. The esti-

mate of the GDF calculated by Zhang et al. (2012) degenerate to the GDF computed

by Ye (1998) when independence is assumed across all observations.

In a similar fashion to Theorem 3.3, the generalized leverage used by Zhang et al.

(2012) is: ∑
k

hMijk(Z) =
∑
k

cov(π̂jkµij, Yik)−
1

2
cov(π̂jk, YijYik) (3.3)

where πijk is the (j, k)th element of 1
σ̂2 V

−1. Notice that the first term in (3.3) bears

a remarkable resemblance to the latter term in Theorem 3.5. In fact, if both σ2 is
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replaced by an estimate σ̂2 in Theorem 3.5 and µij is replaced by an estimate in

(3.3), then σ̂−2 cov
(
µ̂ij, (Yi − µi)

′ ·V−1i · ej
)

=
∑
k

cov(π̂jkµ̂ij, Yik). The first term

in (3.3) acts as a measure of how close the predicted values are to the observed

responses. Under the same reasoning, the second term acts as a measure of how close

the predicted variance between two observations within a block are to an empirical

estimate. Thus, the GDF proposed by Zhang et al. (2012) incorporates both the fixed-

and random-effects in the estimation of the GDF. Because of this relationship between

the predicted values and the additional information added on from the comparing the

covariance terms, the GDF used for the LMM will be the one derived by Zhang et al.

(2012). This will allow for an unknown σ2 to be used in the calculation of the GDF

while restricting V to be known.

3.3 Estimation of the GDF

As defined in (3.3), the GDF cannot be calculated since the quantity is a function

of the unknown parameter vector µ. The GDF developed for the linear regression

models by Ye (1998) uses a data perturbation technique to estimate the generalized

degrees of freedom. Shen et al. (2004a) uses a similar method to adjust the covariance

matrix of the parameter estimates in linear regression for model uncertainty. Shen

and Huang (2006) and Efron (2004) use data perturbation to find optimal penalty

terms to minimize loss in model selection. Shen et al. (2004b) extended the concept of

generalized degrees of freedoms to the exponential family in general, but concentrate

on binomial and Poisson models. Zhang et al. (2012) use data perturbation to estimate

the GDF of LMMs and include the case where the structure of V is unknown and

estimated. This section will give an overview of this procedure while the details can

be found in the aforementioned manuscripts.

The perturbation method requires creating what Shen et al. (2004a) refer to as a
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“pseudo”-response variable, defined as:

Y∗i = Yi + τ · σ∗ · Ỹi (3.4)

where Yi is the response vector defined in (2.4), Ỹi has a multivariate normal dis-

tribution with null mean and variance V, and σ∗ and τ are constants with τ known

as the perturbation size. The perturbation size is bounded in (0,1], however, recom-

mended values of this parameter are in the range [0.5,0.8]. It is customary to set

σ∗ = σ, but this is not a necessary requirement. The pseudo-response variable de-

fined in (3.4) differs from Shen et al. (2004a) and Zhang et al. (2012), however, it is

straightforward to show that these response variables are mathematically equivalent.

The estimation of the GDF is based on the pseudo-response variable and, rather

than use this variable as calculated, this variable is conditioned on the observed

responses. Conditioned on these data, the pseudo-response variable Y∗i has a mul-

tivariate normal distribution with mean Yi and variance (τ · σ∗)2 ·Vi. Zhang et al.

(2012) show that the estimate of the generalized leverage can be written as:

∑
k

(τ)−2 cov∗ (µ̂ijπ̂ijk, Y
∗
ik)−

1

2
Vi(j, k) var∗(Y ∗ijY

∗
ik) cov∗ (π̂ijk, YijYik) .

Any operator followed by an asterisk (∗) will mean that the operator is conditional

on the observed responses, so that cov∗(·, ·) = cov(·, ·|Y). The estimate of the total

generalized degrees of freedom is the summation of the estimated generalized leverages

over all blocks.

A Monte Carlo simulation is used to calculate ĥMij in order to be robust against

the choice of Y∗. this necessitates simulating a large number, D, of pseudo-response

variables Using (3.4), a vector Y∗d=
(
Y∗d1 ,Y

∗d
2 , ...,Y

∗d
N

)′
for d=(1,2, ... ,D) is simu-

lated. These pseudo-response variables are used to create predicted values µ̂d(Y∗d)

=
(
µ̂d1(Y

∗d), µ̂d2(Y
∗d), ..., µ̂dN(Y∗d)

)′
using the generalised least squares estimators. These
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predicted quantities are written so that it is clear they are functions of the psuedo-

response variable, and similar notation will be used for the quantities π̂ijk(Y
∗d). Af-

ter all Monte Carlo simulations are complete, the estimate of the GDF, D̂M, can be

computed by summing the average estimate of variance and covariance terms over all

blocks. This is expressed as:

∑
i

∑
j,k

(D·τ 2·σ2
∗)
−1

[
π̂ijk(Y

∗d)µ̂ij(Y
∗d)− 1

D

∑
d

π̂ijk(Y
∗d)µ̂ij(Y

∗d)

][
Y ∗dik −

1

D

∑
d

Y ∗dik

]

− Vi(j, k)

D2

[
π̂ijk(Y

∗d)− 1

D

∑
d

π̂ijk(Y
∗d)

][
Y ∗dij Y

∗d
ik −

1

D

∑
d

Y ∗dij Y
∗d
ik

]2
(3.5)

The estimate in (3.5) is the same estimate used by Zhang et al. (2012), although

the notation has been changed slightly and some simplification has been performed.

Further simplification can be made if the V can be considered known, but to keep the

estimator of the GDF as general as possible, the estimator is presented as shown. The

Law of Large Numbers stipulates that as the number of simulated pseudo-response

vectors goes to infinity, the estimated generalized degrees of freedom will converge

to the true generalized degrees of freedom
(
e.g. D →∞, D̂M → DM

)
. To ensure

convergence, it is recommended that D be larger than the total number of observations

N =
∑
ni.

Many recommendations have been made for an initial value of σ2. Ye (1998)

recommend an “iterative procedure”, but offer no details. Because of the potential

complexity of this iterative strategy, it is not recommended. Zhang et al. (2012)

uses the most complex model for the simulated response vectors, however this is not

recommended when accounting for model uncertainty because it potentially uses two

different models: one for estimation of the variance parameters and one for estimation

of the fixed-effect parameters. These models may have important differences which
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may not make sense, particularly in small samples. Furthermore, it makes little sense

to use information from one model when the goal is to use a completely separate

model for inference and estimation. The näıve variance estimate can always be used

in the algorithm discussed above, however, in light of the results in the previous

section, this will typically underestimate the true variance.

This work assumes that V is known, however, this is not true in general situations.

This causes the second term in (3.5) to be very small relative to the first term and

contribute little to the overall GDF. Relaxing this assumption will result in larger

GDF values.

3.4 Accounting for Model Uncertainty in Variance Estima-

tion

Since it is assumed that both the structure and values of V are known, the gener-

alised least squares estimators can be used to estimate both the fixed-effect parame-

ters, β, and residual variance, σ2. The generalised least squares estimator of σ2 after

model selection can be represented by:

σ̂2
adj,M̂

=

(
Y − ŶM̂

)′
V−1

(
Y − ŶM̂

)
N − pM̂

(3.6)

where the subscript of the variance parameter estimator specifies that the estimator is

adjusted for covariates and will henceforth be referenced as the adjusted variance. The

vector ŶM̂ are the predicted values from the final model with the parameter values

estimated via the generalised least squares fixed-effect estimator for the hypothesis set

and those variables from the selection set that were chosen to be included in the final

model by the data-driven model selection procedure. The total number of estimated

variables in the final model is pM̂ , which is also the model degrees of freedom for the
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final model, and the total number of observations N.

Equation (3.6) is valid only when the final model is known to be the true model.

By virtue of using a model selection procedure, a true model is not known. To account

for the model uncertainty, the following estimator for σ2 is proposed:

σ̂2
cor =

(
Y − ŶM̂

)′
V−1

(
Y − ŶM̂

)
N − D̂M

(3.7)

so that the estimate of the GDF defined in (3.3) is used in place of the total number

of model degrees of freedom. The subscript “M̂” is superfluous in the notation as

only the model recommended by the model selection procedure would be adjusted

for model uncertainty. This estimator, which will be referred to as the corrected

variance, will have a positive relationship to the GDF so that robust models will have

smaller corrected variance and sensitive models will have large values of the corrected

variance. Unlike the adjusted variance, the corrected variance is not constrained by

linear models theory and, as such, may not have the properties that are expected

or desired. For example, it is well known that σ̂2
adj ≥ 0 with equality only if the

covariates form a perfect predictor. The corrected variance may be negative for very

sensitive models if D̂M > N . Rather than to näıvely set the value of the corrected

variance to some value, it is recommended that no action is performed as this is an

indicator that this may be a poor fitting model.

3.5 Simulation Study

The simulation study discussed in the previous chapter was extended to confirm

that the the estimated variance adjusting for model uncertainty using the GDF was

larger than the näıve estimate when no adjustment was made. Two different values

of σ∗ were used. As a proof-of-concept, σ∗ was set to a value of 1, which was the

simulated value of σ. To mimic a real-life situation, the näıve standard deviation
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estimated from the model recommended from either the model selection procedure

was used in the algorithm. This will be referred to as the data driven method. For

both the proof-of-concept and data driven methods, the perturbation size was set at

0.5 and the total number of perturbations simulated for each dataset was D=200.

Just as in the previous section, many different simulation templates were used. All

tended to tell a similar story, so that only a few are discussed in the text while the

remainder can be found in Appendices C.1-C.4.

Prior to discussing the behavior of the corrected variance, the GDF is assessed in

conjunction with the average dimension of the model at each value of the intracluster

correlation, along with the dimension of the true model. The dimension of the true

model is the number of non-zero parameters in the selection set along with the two

parameters in the hypothesis set. The results of the extension of the simulation study

for Cases 1 and 2 for the proof-of-concept simulation, along with sample sizes of 20

and 40, can be seen in Figure 3.1. As expected, the model selection procedures have a

tendency to recommend overfit models, or models that include more variables than are

truly needed for intracluster correlations around the true value for any combination

of simulation parameters. Interestingly, as the intracluster correlation approaches

the upper limit, it appears that this property disappears and the correct sized model

is typically estimated. This does not mean the correct model is estimated, as this

assessment is beyond the scope of this work. The average dimension of the final model

converges to the expected value as the sample size increases, a result that is expected

from the efficient or consistent nature of the model selection procedure (Figures 3.1a

vs 3.1c,Figures 3.1b vs 3.1d).

The GDF calculated in the proof-of-concept simulation tended to be larger than

the mean dimension of the model for all reasonable values of the intracluster corre-

lation, regardless of the simulation parameters. This should result in the corrected

variance being larger than adjusted variance for reasonable values of the intracluster
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Figure 3.1: Proof-of-concept simulation results showing the GDF and average model
DF (ρ=0.25). The solid line represents the expected dimension of the final model while
the dotted and dashed lines represent the model and generalized degrees of freedom,
respectively. As expected from overspecification, the model degrees of freedom are
larger than the expected dimension, while the GDF inflates the model degrees of
freedom.
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correlation, leading to an expected result per Theorem 3.3. For intracluster corre-

lation values much higher than the simulated value, the GDF can be smaller than

both the mean and the expected dimension of the model. By (3.7), this should result

in corrected variances smaller than the adjusted variances. Since these values of the

intracluster correlation are unlikely to be used as an estimate, this phenomena can be

ignored. As sample size increases, the mean GDF values do decrease (Figures 3.1a vs

3.1c,Figures 3.1b vs 3.1d), although this decrease is difficult to detect from the plots.

There is also a slight concavity to the GDF profile over the intracluster correlation

values with a maximum being achieved close to zero. These characteristics are robust

to any of the simulation parameters explored.

In addition to comparing the mean values of the GDF and the model degrees

of freedom, the tendency of the GDF of being larger than the model degrees of

freedom was assessed. In a similar manner to the magnitudes of these quantities,

the proportion of times the GDF was larger than the model degrees of freedom was

plotted over the values of the intracluster correlation used for the analysis. The plots

for the four simulation parameters for the proof-of-concept simulations can be seen

in Figure 3.2. Overall, the GDF is higher than the model degrees of freedom for

reasonable values of the the intracluster correlation, although this proportion drops

off precipitously as the intracluster correlation value approaches the upper limit. The

proportion does not change as a function of the covariates (Figure 3.2a vs 3.2b, Figure

3.2c vs. 3.2d), but becomes closer to 1 over a broader range of intracluster correlation

values as the sample size increases (Figure 3.2c,3.2d).

Figure 3.3 shows the adjusted and corrected variances for the proof-of-concept

simulations. For reasonable values of the intracluster correlation, the corrected vari-

ance estimate is larger than the adjusted estimate since the GDF are typically larger

than than the model degrees of freedom. This result agrees with Theorem 3.3. In all

of the proof-of-concept simulations, N � D̂M > pM̂ , so the impact of the GDF does
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Figure 3.2: Probabilities that the GDF is larger than the model degrees of freedom
(ρ=0.25). The dashed line is the probability and shows that the GDF almost certainly
inflates the model degrees of freedom.
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not have a large impact on the corrected variance, leading to the marginal increase

of the corrected variance compared to the adjusted variance.

The average dimension and GDF calculated from the data-driven method is shown

in Figure 3.4. Unlike the proof-of-concept method, the data-driven method is convex

and approaches an upper limit at an intracluster correlation value of 0. When the

true value of this parameter is 0.25, the GDF tends to be larger than the average

dimension of the model recommended by the model selection procedure. Just as

in the proof-of-concept simulations, the GDF decreases as the sample size increases

(Figures 3.4a vs 3.4c,Figures 3.4b vs 3.4d).

When the value of the intracluster correlation increases to 0.75, the value of the

GDF is not typically greater than the model degrees of freedom. Rather, the GDF

is typically less than or equal to the model degrees of freedom, which will result in

either no inflation of the residual variance or a corrected variance that is smaller

than the adjusted variance. This characteristic limits usefulness of the GDF for

general purposes. These results can be seen in Figure 3.5. The implications of this

characteristic are discussed in the Discussion and Conclusions section of this chapter

and the in the corresponding section in Chapter 4.

As expected, the average size of the GDF is relative to the model degrees of

freedom is related to the difference in size shown in Figure 3.5. The proportion of

times the GDF is larger than the model degrees of freedom can be seen in Figure 3.6

when the true value of the intracluster correlation is 0.75. As expected, for reasonable

values of the intracluster correlation, the GDF is not always greater than the model

degrees of freedom. In particular, the model degrees of freedom is typically larger

than the GDF when the sample size is large (Figures 3.6c,3.6d). This will limit the

usefulness in correcting the estimate of the residual variance for model uncertainty.

The corrected variance calculated from the data-driven method behaves similar to

that of the proof-of-concept for almost all of the intracluster correlation values except
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Figure 3.3: Data-driven simulation results showing the adjusted and corrected resid-
ual variance estimates (ρ=0.25). The solid line represents the true value of the residual
variance while the dashed and dotted lines represent corrected and adjusted residual
variance estimates, respectively. These values are close together and underestimate
the true variance.
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Figure 3.4: Data-driven simulation results showing the GDF and average model DF
(ρ=0.25). The solid line represents the expected dimension of the final model while
the dotted and dashed lines represent the model and generalized degrees of freedom,
respectively.
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Figure 3.5: Data-driven simulation results showing the GDF and average model DF
(ρ=0.75). The solid line represents the expected dimension of the final model while
the dotted and dashed lines represent the model and generalized degrees of freedom,
respectively.

61



www.manaraa.com

Figure 3.6: Probabilities that the GDF is larger than the model degrees of freedom
(ρ=0.75). The dashed line is the probability and shows that the GDF is almost may
not always to be larger than the model degrees of freedom.
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when this value is close to zero. As the intracluster correlation used for the model

approaches zero, the corrected variance increases so there is a distinct minimum. This

characteristic occurs regardless of the value of the simulated intracluster correlation,

but tends to mirror the adjusted variance closer as the sample size increases. This

characteristic can be seen in Figure 3.7 and is further discussed in the Discussion and

Conclusion section of this chapter.

The extended simulations for the data driven method, found in Appendix C.4,

show that the corrected variances all resemble the profile in Figure 3.6, even if the

GDF is smaller than the average degrees of freedom in the model. This is because

the GDF has a lower bound of 0, so that as the total number of observations in-

crease, the ratio of the corrected variance to the adjusted variance approaches unity(
limN→∞

N−D̂M

N−pM̂
= 1
)

. Therefore, even though the the GDF performs poorly when

the intracluster correlation is large, the corrected variance converges to the adjusted

variance.

3.6 Variance Estimation in the Cervical Radiculopathy Trial

The GDF for the cervical radiculopathy trial was calculated to account for model

uncertainty using the data-driven algorithm described previously. This means that

σ∗ was set to the observed standard deviation from the model discussed in Chapter 2,

which is 4.92. The final model, was made up of twelve different columns corresponding

to a model degrees of freedom of 12, has a GDF value of 34.39. Using this value, the

corrected variance was found to be 29.46, which is larger than the adjusted variance

of 24.24.

This trial was able to shed some light on the effect of a simulation parameter that

was held constant in this work: σ2. The ratio between the GDF and dimension of the

model from the cervical radiculopathy trial is 2.86, while the similar ratio computed

from the simulation results in Figure 3.3 is 1.40. Thus, models with higher residual
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Figure 3.7: Data-driven simulation results showing the adjusted and corrected resid-
ual variance estimates (ρ=0.25). The solid line represents the true value of the residual
variance while the dashed and dotted lines represent corrected and adjusted residual
variance estimates, respectively. These lines are very close together and reflect the
fact that the corrected variance does not inflate the variance by a larger amount.
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variances will have larger GDF values. This is intuitive because the residual variance

can be thought of as a measure of model fit since perfect fitting models will have a

residual variance of 0. As this value increases, the predicted values become farther

away from the observed values, indicating a poorer fit.

This information could be used to design a prospective study using a novel inter-

vention outlined in the previous chapter. Without adjusting for model uncertainty,

the study required 308 total patients, or 154 per group. A similar power analysis that

incorporates model uncertainty through the corrected variance yields a recommended

sample size of 372, or 186 per group. Adjusting for model uncertainty would require

a considerable larger amount of patients that need to be enrolled into the study than

one that ignores uncertainty in the model. Appropriately designed studies should

incorporate this characteristic into power analysis.

3.7 Discussion & Conclusions

This chapter introduced the paradigm in which model selection occurred and

which model uncertainty can be taken into account. This resulted in conclusions

describing the asymptotic unbiasedness of the fixed-effect estimates as well as the

asymptotic normality of this vector. Additionally, the expected value of the adjusted

variance after model selection was found to be no less than the adjusted variance if

the true model were known. Equality of this statement could be achieved if the true

model is known, and in the absence of this condition, equality is not guaranteed.

A statistic referred to as the generalized degrees of freedom (GDF) was introduced

and can be thought of as the average sensitivity of the predicted responses to a change

in the observed response. An extension of Ye (1998) was used to show a derivation

of the GDF for the LMM, but the work by Zhang et al. (2012) allowed for the use of

a GDF that not only measured the flexibility of modelling the predicted values but

also measured the flexibility in estimating the covariance parameters and was used
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for adjusting the residual variance for model selection. The restriction on V was kept

not because of an inability to solve the GDF, but due to an uncertainty of how the

elements of V behave in the presence of model uncertainty.

The GDF was used with the generalised least squares estimate of the residual

variance to produce an estimate of the this statistic that is adjusted for model un-

certainty. The proof-of-concept simulations demonstrated that for reasonable values

of the intracluster correlation, the GDF is larger than the model degrees of freedom,

resulting in a corrected variance estimate that is larger than the estimate using the

model degrees of freedom. However, since the total number of observations were much

larger than either the model degrees of freedom or GDF, this resulted in little change

in the residual variance estimate.

The data-driven method demonstrated a weakness of the GDF when applied to

real data. When the adjusted variance was used in the perturbation method, the

GDF was not larger than the average dimension of the model for high values of the

intracluster correlation. This resulted in a corrected variance that smaller than the

adjusted variance. However, since the total sample size was much larger than either

degrees of freedom, this resulted in a corrected variance almost equal to the adjusted

degrees of freedom.

In view of Theorems 3.1 and 3.2, it may be interesting to know the behavior of

E
(

lim
N→∞

σ̂2
M̂

)
. The simulations showed that as the sample size increased, the residual

variance approached σ̂2
M̂o

. This result would be intuitive because, as the sample size

increases, a true model is more likely being chosen, yielding an unbiased estimate of

the residual variance. The aforementioned relationship may be able to be shown using

the paradigm discussed in Section 3.1 and in Appendix B.2. However, this identity

hinges on theoretical aspects of the consistent or efficient nature of the model selection

strategy that needs to be carefully studied prior to making any claim.

Even though the GDF for the LMM to adjust for model uncertainty and the
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GDF derived for adaptive model selection by Zhang et al. (2012) are similar, they

may indeed be measuring different quantities. Although not shown in this text, the

second term in (3.5) contributes very little to the overall GDF. Thus, it is not expected

that using the results from Zhang et al. (2012) had a severe influence on the results

shown in the simulation study. However, the formulation of the GDF in (3.5) itself

may indicate a potential problem with using this quantity for the GDF to account for

model uncertainty. A quantity that can be considered a count variable, or a variable

that is a summation of indicator variables that are not ordinal, is considered unitless.

This holds whether the count variable is the number of columns in a design matrix

(p), the sample size (ni or N ), or the realization of a Poisson-distributed random

variable. The estimator of the GDF proposed by Zhang et al. (2012), which is used

for estimator of the dimension of the model in this work and a unitless penalty term

in the original work, has units that are not combinable. The first term in (3.5) is

unitless, but the second term has units that are proportional to the units of the data

raised to the fourth power. These quantities cannot be added, and as such, may be

an indication that the GDF as stated in (3.5) can be improved upon.

The restriction imposed in the simulation study that the covariates are ‘time-

independent’ paired with the compound symmetric structure of the error terms can

limit some generalizability of the results. Under this scenario, the predicted values are

independent of the intraclass correlation. If this situation were not true, so that either

the covariates were ’time-dependent’ or that the structure of the error terms was a

different one-parameter structure, such as auto-regressive, the profile of the GDF over

the possible values of the internal elements of Vi would change. It is expected that

the values of the GDF would increase as the absolute value of the internal elements

of Vi increased. Confirmation of this will be left to future work.

Lastly, applying the proposed methodology to the cervical radiculopathy trial

showed how model uncertainty affects the results in a clinical setting. Using the GDF
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resulted in almost tripling degrees of freedom in the model, yielding in a corrected

variance that was almost 1.25 times larger than the original estimate. A sample size

calculation for a potential prospective study showed that using the corrected degrees

of freedom resulted in a substantial increase in the number of subjects needed for a

sufficiently powered study as compared to one using the adjusted variance estimate.
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CHAPTER IV

Adjusting for Model Uncertainty in Inference

4.1 Model Uncertainty and Hypothesis Testing

The previous chapter gave an overview of estimating the residual variance while

accounting for model uncertainty. The residual variance is a key component when

performing hypothesis tests or constructing confidence intervals, which were shown

in Chapter 2 to have less than optimal coverage probabilities. This section uses the

corrected variance developed in the previous chapter to perform hypothesis tests and

construct confidence intervals while adjusting for model uncertainty. Rather than just

use the corrected variance in the hypothesis tests and confidence intervals suggested

by the generalised least squares theory, a statistic based on the general global linear

approximation proposed by Shen et al. (2004a) is used. The methodology presented

in this chapter is examined by further extending the simulation results and with the

cervical radiculopathy trial discussed in Chapters 2 and 3.

69



www.manaraa.com

4.2 Properties of Post-Model Selection Fixed-Effect Estima-

tors

4.2.1 Variance Estimation of the Fixed-Effect Parameters accounting for

Model Uncertainty

Coverage probabilities and hypothesis tests of a linear combination of parameter

estimates are functions of both the fixed-effect parameter estimates and the vari-

ance of these estimates. As discussed in Chapter 3, the parameter estimates are

asymptotically unbiased when estimated after an efficient or consistent model selec-

tion procedure has been applied. However, the residual variance is not unbiased in

the presence of model uncertainty. Since the residual variance plays an important

role in the variance of the fixed-effect estimates, this latter quantity should also not

be unbiased.

The notation in the previous section can be used to assess how ignoring model

uncertainty affects the variance estimation of the fixed-effect estimates. As Theorem

4.1 demonstrates, ignoring model uncertainty can result in potentially underestimat-

ing the covariance matrix of the fixed-effect estimates. This can result in higher than

expected incidences of Type-I errors and coverage probability that are smaller than

expected.

Theorem 4.1. When using the generalised least squares estimate for β, β̂M̂ , then

E
[
cov

(
β̂M̂

)
− cov

(
β̂Mo

)]
≥ 0 (4.1)

or equivalently, the difference of the above matrices is non-negative definite. If X2,Mc
o
=0,

then E
[
cov

(
β̂M̂

)
− cov

(
β̂Mo

)]
= 0.

Similar to Theorem 3.3, Theorem 4.1 states that model uncertainty will result in

higher variances than if the model uncertainty is ignored. However, Theorem 4.1 may
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be difficult to interpret because it deals with the ‘size’ of matrices. If the off-diagonal

elements of both cov
(
β̂M̂

)
and cov

(
β̂Mo

)
are ignored and the focus is concentrated

on the the elements along the diagonal of the covariance matrix, Theorem 4.1 simply

states that the variance of the fixed-effect estimates from a model recommended by

a model selection procedure is greater than if the model is assumed to be known, or

that ignoring model uncertainty yields smaller standard errors. The proof of Theorem

4.1 is a generalization of a similar proof in Shen et al. (2004a) for error terms assumed

to be independent. If both the covariates and response were pre-multiplied by V−
1
2 ,

the conditions found in Shen et al. (2004a) are met, thus proving Theorem 4.1.

The variance of the fixed-effects from the generalised least squares solution is

σ2 · (X′ ·V−1 ·X)−1, and when σ2 is unknown and a model selection procedure has

been performed, it is replaced by σ̂2
adj,M̂

. The corrected variance can be substituted

for the adjusted variance to adjust for model uncertainty. However, as the simulation

results from the previous chapter demonstrate, the size of the inflation of the corrected

variance compared to the adjusted variance will be small for even moderate sample

size. It is expected that this will have little impact on the Type-I error rates and

coverage probabilities. Thus, a different type of estimator must be proposed that can

adjust the variance of the fixed-effect estimates.

4.2.2 General Linear Global Approximation

It is known that the size of the elements of the variance matrix of the fixed-effect

estimates is related to the number of columns of the variance matrix, which is equal to

the estimated parameters in the final model. If the number of estimated parameters

in the final model increases, the variance of the fixed-effect estimators will increase. In

the previous section, an adjustment for model uncertainty was incorporated through

one quantity, the GDF. This was the result of an exploitation of the relationship

between the degrees of freedom and expected value of the predicted values. This
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is a fortuitous relationship that cannot be generalized to cases outside of the scope

of the original problem. Therefore, incorporating model uncertainty in the variance

matrix of the parameter estimates will require a statistic other than the generalised

least squares estimator. Rather than just estimating the variance of the parameter

estimates, an separate estimate of the parameters themselves is proposed so that its

variance can be calculated.

If only unbiased estimators of β are considered, then, by definition, the uni-

form minimum variance unbiased estimator (UMVUE) quality of the generalised least

squares estimator can be used to identify estimators with a higher variance. Since the

generalised least squares estimator of β has this quality (Myers and Milton (1998)),

then any other unbiased estimator will have a variance no less than the generalised

least squares estimator. One such estimator is discussed in the following section.

Any new statistic for estimating the parameters must have certain qualities to

permit consideration. Most importantly, the estimator must be an unbiased estimator

of the statistics. Because of this property and the UMVUE property of the generalised

least squares estimator, it is known that the variance of a new statistic will not be

smaller than that of the generalised least squares estimator. Second, just as in the

estimation of the GDF, it is desirable for the size of the variance of the statistic to be

related to the quality of fit of the final model so that poor fitting models will yield

large variance and vice versa.

One well-known approximation that meets the aforementioned criteria is an esti-

mation method based on the Taylor expansion, which, for a vector of statistics using

the response variable Y, can be written as:

g(Y) = g(µ) +
∑
i

∑
j

∂g(Y)

∂yij

∣∣∣∣
Y=µ

(Yij − µij) (4.2)

where g(Y) is the (k × 1) vector of statistics that is to be estimated. Under certain
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conditions, such as g(·) being continuously differentiable with respect to the true

values µ as well as Y being close to µ, the following properties are true:

E[g(Y)] ≈g(µ)

cov[g(Y)] ≈σ2 ·DVD′
(4.3)

In (4.3), Di=
(
∂g(Y )
∂µi1

, . . . , ∂g(Y)
∂µini

)′
and D=(D1, . . . ,DN) so that D is a k ×N matrix.

However, if g(Y) is the estimate of the regression parameters after model selection

(β̂M̂), then it is known that g(·) is not continuously differentiable and methods such

as the Taylor expansion may not be able to provide useful estimates. Rather, an

estimate of the form:

d(Y) = α0 +
∑
i,j

(yij − µij) ·αij (4.4)

is proposed, where α0 and αij are (k × 1) vectors (i = (1, 2, ..., N), j = (1, 2, ..., ni)).

Keeping with the language introduced by Shen et al. (2004a), d(Y) will be referred

to as the general global linear approximation (GGLA) of g(Y). The expected value

and variance of d(Y) are:

E [d(Y)] = α0

var [d(Y)] = σ2Σ = σ2 ·
∑
i

∑
j,k

Vi(j, k) ·αij ·αik
(4.5)

In a similar strategy to the estimation of the GDF, estimators of the αij are

proposed so they are related to the robustness of the model procedure. The definition

of the generalized leverage in Definition 3.4 can be used to propose an estimator of

the αij that incorporates model uncertainty. The estimators, which can be found in

Definition 4.2, are related to the concept of the GDF described in Chapter 3.

Definition 4.2. The optimal vectors for the αij that incorporate model uncertainty
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are:

αoij =
∂

∂µij
E[g(Y)]

=
1

σ2
E
[
e′j ·V−1i · (Yi − µi) · g(Y)

]
=

1

σ2
cov

(
e′j ·V−1i · (Yi − µi) ,g(Y)

) (4.6)

with ej being the jth column of a ni×ni identity matrix. All other notation has been

defined.

To ensure that the estimate of the GGLA is unbiased, the optimal estimate of αo0

is E [g(Y)]. The derivation of Theorem 4.2 is a straightforward substitution in the

proof for Theorem 3.5.

The parameters αij primarily serve to inflate the variance as an adjustment due to

poor fitting models, as the size of the elements of αij will be related to the flexibility

of the model fitting procedure. When summed over all observations, these parameters

can also impact the estimate of g(Y), particularly in small samples. It is also possible

that certain elements of αij may be large while others may be near zero, indicating

that only certain elements of g(Y) are susceptible to model uncertainty while others

are fairly robust. The values of the elements αij near zero will correspond to the

robust elements of g(Y), and the variance of these terms will be less affected by

model uncertainty. Conversely, elements in g(Y) that are very susceptible to large

changes when the response variable is perturbed by small amounts will have elements

of αij large in magnitude.

Since the GGLA is related to the theory that was used to estimate the GDF, it

would be logical to use the same type of estimation method to estimate parameterrs

in the GGLA. The perturbation method can be used for this estimation, and a more

detailed description of this method for the GGLA is found in the subsequent section.

The GGLA does not propose a solution to σ2 and Vi so that other methods must

be used provide these estimates. As in the rest of this work, the elements of Vi
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are considered known. Either the adjusted or corrected variance can be used for the

parameter σ2. In keeping with the theme of this entire work, it is recommended that

the corrected variance be used.

As (4.4) is written, the GGLA is not a statistic since the estimator contains the

unknown parameters α0, αij and µij. The estimation of α0 and αij are discussed in

the following section. The predicted value µ̂ij, calculated from the generalised least

squares estimates, can be substituted in for µij creating an estimate of g(Y) that

is data-dependent. Since the predicted values are functions of the response, failing

to account for this variability will likely bias the results to some extent. When the

estimates of α0, αij and µij are used, the resulting vector is defined as:

d̂(Y) = α̂0 +
∑
i,j

(yij − µ̂ij) · α̂ij (4.7)

The variance of the GGLA is interpreted similar to that of the variance of the post-

model selection fixed-effect estimator using generalised least squares. For instance,

the diagonal elements of var [d(Y)] are standard errors of the GGLA while the off-

diagonal elements are covariances between fixed-effect estimates. This permits testing

of linear hypotheses and constructing multivariate confidence intervals, which will be

discussed in Section 4.4.

The variance of the GGLA has some important qualities. The variance matrix

is symmetric and positive definite, which are crucial elements when constructing

hypothesis tests. This topic will be further discussed in Section 4.4. The variance

matrix itself is unstructured as in that it has q·(q−1)
2

different values, which is the

maximum for a matrix of its size. This restricts the scope of statistics that can be

used for d(Y). Strictly speaking, the GGLA could be used to estimate d(Y) = Yi so

that the GGLA is itself a model for µ. However, if it was that other blocks shared the

covariance structure, the GGLA can not be used. Furthermore, if the response vector
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is assumed to have any sort of parametric error structure other than unstructured,

the GGLA can not be used.

4.3 Estimation of the GGLA

As previously noted, the GGLA in Theorem 4.2 is based on the results from the

estimation of the GDF calculated in Theorem 3.5. Because of the similarities, it

would make sense that a similar estimation method could be used to obtain estimates

of the vectors α0 and αij. If a psuedo-response variable, as in (3.4), is considered

the response and this response conditions on the observed response variable, then an

estimate of the optimal vectors α0 and αij are expressed in Corollary 4.3:

Corollary 4.3. If the response variable is Y∗i , where Y∗i = Yi + τ · σ∗Ỹ as in (3.4),

then, under the conditions of Definition 4.2, the estimates of α0 and αij can be

calculated by:

α̂o0 = E[g(Y∗)]

α̂oij =
∂

∂Yij
E∗[g(Y∗)]

=
1

(τ · σ∗)2
E∗
[
e′j ·V−1i · (Y∗i −Yi) · g(Y∗)

]
=

1

(τ · σ∗)2
cov∗

(
e′j ·V−1i · (Y∗i −Yi) ,g(Y∗)

)
(4.8)

The data perturbation method discussed previously can be used to estimate the

parameters of the GDF. Under a Monte-Carlo simulation method similar to the one

described in the previous chapter, the vector Y∗di (d=1,2,...,D) is simulated from a

normal distribution with mean Yi and variance Vi and combined to form a pseudo-

response vector Y∗d=(Y∗d1 ,Y
∗d
2 , ...,Y

∗d
N )′. For each pseudo-response vector, g(Y∗d)

is calculated. From the results of Corollary 4.3, the estimate of α̂o0 can be approx-

imated by the arithmetic mean of statistic g(Y∗) over all D Monte-Carlo simula-
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tions. Similarly, the vector α̂oij can be estimated using conditional covariance of the

quantity e′j · V−1i · (Y∗i −Yi) with statistic g(Y∗), respectively. If bdij is defined as

e′j ·V−1i · (Y∗i −Yi), b̄ij = D−1
∑
d

bdij, and ḡ=D−1
∑
d

g(Y∗d) then the estimates of α̂o0

and α̂oij are :

α̂o0 =
1

D

∑
d

g(Y∗d)

α̂oij =
1

(D − 1) · (τ · σ∗)2
∑
d

(
bdij − b̄ij

)
·
(
g(Y∗d)− ḡ

) (4.9)

The quantity (D − 1) in the divisor of α̂oij is used rather than (D) because one

degree of freedom is spent estimating ḡ. This divisor is typically used in estimating

the variance of a statistic using a bootstrap or any other Monte Carlo estimation

method. The original derivation of the GGLA by Shen et al. (2004a) for error terms

assumed to be independent and homogenous uses the divisor of (D − 1), and this

divisor was kept to be notationally consistent. Regardless of the choice of divisor,

as becomes D moderate to large, the estimates will be similar and the effect of the

divisor will be negligible.

The estimates described in (4.9) have some important qualities. Both α̂o0 and α̂oij

can be thought of as means and have a asymptotic distribution that is governed by

the Central Limit Theorem. As such, it can be concluded that d̂(Y) will have an

asymptotic multivariate normal distribution with mean E[g(Y)] and variance σ2 ·Σ.

When α̂0 , α̂ij, σ
2, and Vi are unknown, estimates can be used, although this situation

would result in approximate asymptotic distributions.

The statistic d̂(Y) is based on two quantities that are estimated using the pertur-

bation method that require multiple pseudo-response vectors to be computed from a

Monte-Carlo simulation. The notation of these simulations is the same for the esti-

mation of the GDF and the GGLA; in practice, the pseudo-response vectors should

be simulated separately. Just as in the estimation of the GDF, D should be chosen
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to be at least larger than the total sample size N. These restrictions will ensure that

the estimates of α̂o0 and α̂oij are robust against the specific pseudo-response vectors

as well as robust against the choice of divisor discussed previously. Lastly, when all

observations can be assumed to be independent, the estimates in (4.9) reduce to the

estimates of the Shen et al. (2004a).

4.4 Hypothesis Testing and Construction of Confidence In-

tervals

If model uncertainty were ignored and hypothesis testing or construction of con-

fidence intervals on a linear combination of the parameters was to be done, classical

linear models theory provides the basis for this action. In a null hypothesis for a

linear combination of the parameters, written as Ho : L ·β=ho, the statistic using the

generalised least squares estimator L · β̂M̂ − ho will have a asymptotic multivariate

normal distribution with mean 0 and variance σ2

(
L
(
X′
M̂
·V−1 ·XM̂

)−1
L′
)−1

. The

matrix L, which will be referred to as the contrast matrix, is a full-rank matrix that

has dimension q × p. Ignoring model uncertainty, a Wald statistic QM̂ is calculated

as:

QM̂ = σ̂2
adj,M̂

(
L · β̂M̂ − ho

)′
·
(
L ·
(
XM̂ ·V

−1 ·XM̂

)−1
L′
)−1
·
(
L · β̂M̂ − ho

)
(4.10)

Under the null hypothesis, QM̂ has a asymptotic χ2 distribution with q degrees of

freedom.

The asymptotic normality will also allow the construction of confidence intervals.

A single contrast `m · β̂M̂ has an asymptotic normal distribution with mean `m · β

and variance σ2

(
`m

(
X′
M̂
·V−1 ·XM̂

)−1
`′m

)−1
, where `m is the mth row of L. A
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marginal 100(1− α)% confidence interval can be written as:

(
`m · β̂M̂ − z1−α2 · SE

(
`m · β̂M̂

)
, `m · β̂M̂ + z1−α

2
· SE

(
`m · β̂M̂

))
(4.11)

with SE
(
`m · β̂M̂

)
= σ

√(
`
(
X′
M̂
·V−1 ·XM̂

)−1
`′
)

being the standard error of the

contrast and z1−α
2

is the (1 − α
2
)th percentile of the standard normal distribution.

The interval in (4.11) is a marginal interval because it does not depend on any other

contrasts m′ 6= m. When q > 1, the confidence intervals are typically adjusted

for multiple comparisons, so that overall, the family of confidence intervals has a

coverage probability of 100(1 − α)%. These are known as simultaneous confidence

intervals and their consideration will be outside the scope of this work. When q=1,

the relationship between the chi-square and normal distributions is often exploited,

where the positive square root of a random variable with one degree of freedom

results in a normally distributed variable. This allows use of the normal distribution

in hypothesis testing and the simultaneous confidence interval will reduce to the

marginal confidence interval.

One possible way to incorporate model uncertainty in the hypothesis tests in

(4.10) could be to use the corrected variance in place of σ2. It is not expected this

will improve the testing qualities discussed in Chapter 2 when the sample size is much

larger than the GDF. This strategy will be referred to as the corrected method and

the relationship between the GDF and adjusted variance results in Qcor = QM̂ ·
N−pM̂
N−D̂M

and SEcor

(
`m · β̂M̂

)
= SE

(
`m · β̂M̂

)
·
√

N−pM̂
N−D̂M . Substituting these quantities into

(4.10) and (4.11) will yield the corrected test statistics and confidence intervals. In

this strategy, the quantity
N−pM̂
N−D̂M acts as an inflation factor, inflating the statistics

for model uncertainty.

Another strategy for performing hypothesis tests and constructing confidence in-

tervals is to use the estimate of the GGLA. Because of the asymptotic normality
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of d̂(Y), a test statistic can be created that tests a similar hypothesis as (4.10). If

β̂GGLA is the estimate of the fixed-effects parameters computed using (4.7) and (4.9)

to estimate g(Y), the corresponding test statistic:

QGGLA = σ̂2
cor

(
L · β̂GGLA − ho

)′
· (L ·Σ · L′)−1 ·

(
L · β̂GGLA − ho

)
. (4.12)

Under the null hypothesis, this test statistic will have an asymptotic χ2 distribution

with q degrees of freedom.

Due to the asymptotic normality of the GGLA estimates, confidence intervals can

be created in a similar fashion to (4.11). Replacing β̂M̂ and SE
(
`m · β̂M̂

)
in (4.11)

with the appropriate estimates from the GGLA model yields:

(
`m · β̂M̂ − z1−α2 · σcor

√
`m ·Σ · `′m, `m · β̂M̂ + z1−α

2
· σcor

√
`m ·Σ · `′m

)
(4.13)

Lastly, a test statistic that uses both the generalised least squares estimates and

the estimates from the GGLA can be used for hypothesis testing and the construction

of confidence intervals. The fixed-effect estimates from the generalised least squares

are used because of their well-known qualities and the variance estimate from the

GGLA is used because of its ability to provide inflated standard error estimates that

adjust for model uncertainty. This strategy, which will be referred to as the combined

method, yields a test statistic:

Qcomb = σ̂2
cor

(
L · β̂M̂ − ho

)′
· (L ·Σ · L′)−1 ·

(
L · β̂M̂ − ho

)
. (4.14)

Because of the robust nature of the generalised least squares estimates, it is as-

sumed that
(
L · β̂M̂ − ho

)
will have an asymptotic normal distribution with null

mean and variance (L · Σ · L′) under the null hypothesis. This method of testing was

originally used by Shen et al. (2004a) in his assessment of the GGLA for an indepen-
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dent response variable. Just as in the previous estimates, a confidence interval can

be constructed as:

(
`m · β̂M̂ − z1−α2 · σcor

√
`m ·Σ · `′m, `m · β̂M̂ + z1−α

2
· σcor

√
`m ·Σ · `′m

)
(4.15)

When q=1, the hypothesis tests and confidence intervals described in this section

are interchangeable. This means if a confidence interval includes the hypothesized

value, the corresponding hypothesis will fail to reject the null hypothesis, and vice

versa. Thus, the coverage probability and Type-I error are complements when the

hypothesized value is zero. Since the Type-I error is more commonly understood than

the coverage probability, this quantity is used in the assessment of the aforementioned

methods when the focus parameter is zero. When the focus parameter is non-zero,

coverage probabilities are assessed.

Each of these strategies will provide unique results in adjusting for model uncer-

tainty. Both the simulation study and the cervical radiculopathy trial can be used to

assess the application of these proposed methods. The following sections detail these

analyses.

4.5 Simulation Study

Just as in Chapter 3, the proposed methods are evaluated in the context of the

simulation study introduced in Chapter 2. For each combination of simulation pa-

rameters, the proof-of-concept and data-driven results were assessed to show how the

proposed methods perform in both theoretical and clinical scenarios. The proof-of-

concept method uses the variance of the simulated model (σ2 = 1) for both the per-

turbation estimation method and variance estimate whereas the data-driven method

uses the corrected variance estimate for both the estimation method and variance

estimation. Just as in the previous simulations, the elements of Vi are assumed to
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be known but varied to assess how misspecification of these values affect the results.

The GGLA is related to many different quantities whose behavior has been as-

sessed in the presence of model uncertainty. In this study, the estimate of the focus

variable from the GGLA is assessed to determine if the GGLA estimate of the fixed-

effects parameter is a sufficient estimator of this parameter. The standard error of the

focus variable is also assessed to determine how model uncertainty was incorporated

into the variance of of the GGLA. Lastly, the Type-I errors of the hypothesis tests

and the coverage probabilities of confidence intervals constructed using each of the

three methods that adjust for model uncertainty, and the generalised least squares

estimate that does not adjust for model uncertainty, are be assessed for each of the

different simulation paradigms. The assessment of each quantity was done with re-

spect to the results from methodology that does not correct for model uncertainty,

which was shown in the simulation results in Chapater 2.

The proof-of-concept simulation results for the estimate of the focus variable can

be seen in Figure 4.1. Generally speaking, the estimates from the GGLA method

closely match the generalised least squares estimates, particularly if there are no

other non-zero effects in the model (Figures 4.1a,4.1c). There is some slight divergence

from the generalised least squares estimates when non-zero effects are in the model

(Figure 4.1b) that is pervasive regardless of the other simulation parameters, but

this divergence tapers with an increased sample size (Figure 4.1d). The data-driven

method produces similar results. These results, as well as the extended results for the

proof-of-concept and data-driven methods can be seen in Appendices D.1 and D.2.

Although the mean values are comparable between the estimation methods, the

standard deviation of GGLA estimates is higher than the generalised least squares

estimates for reasonable values of the intracluster correlation. The difference between

standard deviations is a function of whether there are other non-zero parameters in the

model, so that in the presence of non-zero variables, the standard deviation increases.
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Figure 4.1: Proof-of-concept simulation results showing the mean GGLA estimate of
the focus parameter (ρ=0.25). The generalised least squares estimates are displayed as
the dashed line, while the GGLA estimates are the dotted line. The GGLA estimates
mirrors the generalised least squares estimates
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This characteristic is exemplified by Figure 4.2 and implies that the GGLA method

produces estimates that are typically farther away from the mean value than the

generalised least squares estimates. When taken individually, this could severely affect

the Type-I error rates and coverage probabilities that use the GGLA estimates, even

if the standard error was adjusted appropriately. More importantly, this casts doubt

on the interpretability of the parameter estimates, particularly if these estimates are

producing results that differ greatly in magnitude than is expected. The extended

simulation results can be found in Appendix D.3. The data-driven method produces

very similar results, so much so that they do not need to be demonstrated here. All

of the data-driven results can be found in Appendix D.4.

The inflation of the standard error of the focus variable using the GGLA and cor-

rected methods are shown in Figure 4.3 for the proof-of-concept simulation. Because

the total sample size was much larger than the degrees of freedom, the corrected and

generalised least squares estimates are virtually indistinguishable. The standard er-

ror of the focus variable is greater than either the standard error calculated from the

generalised least squares or corrected methods regardless of simulation parameters

and for reasonable values of the intraclass correlation. The extended proof-of-concept

simulation results for the estimate of the standard error of the focus variable for the

proof-of-concept simulations can be seen in Appendix D.5.

The standard deviations calculated using the corrected method are one-to-one

functions of the GDF, so the profile of the proportion of times this quantity is greater

than the unadjusted method was displayed in Chapter 3. The proportion of times

the standard errors computed by the GGLA method are larger than the method that

does not adjust for model uncertainty can be seen in Figure 4.4. These resemble

the shape of the profiles in Chapter 3, but are slightly smaller in magnitude. Just

as the plots in Figure 3.2, the proportion of times the standard error computed by

the GGLA is greater than the unadjusted standard error increases with sample size
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Figure 4.2: Proof-of-concept standard deviation of the parameter estimates from
the simulation study (ρ=0.25).The dashed line correspondes to the generalised least
squares estimates and the dotted lines correspond to the GGLA estimates. The GGLA
estimates typically have a higher standard deviation, suggesting estimates with more
extreme values.
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Figure 4.3: Proof-of-concept simulation results showing the standard errors stemming
from the GGLA and corrected methods (ρ=0.25). The dashed line corresponds to
the generalised least squares and the mixed line corresponds to the corrected method.
These lines are very close and resemble one mixed line. The GGLA standard error
estimates are the dotted line and, for reasonable values of the intracluster correlation,
are larger than the standard error.
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(Figure 4.4a vs 4.4c, 4.4b vs 4.4d).

The data-driven method shows similar results to the proof-of-concept simulation

for small values of the intracluster correlation. However, the results diverge when

ρ = 0.75. As Figure 4.5a demonstrates, the standard error of the focus variable is

approximately equal to or less than the estimate calculated from the generalised least

squares estimates. Furthermore, the corrected method holds the same quality when

the intracluster correlation is large. This occurs regardless of the model selection

metric or simulation paradigm used. The reason for this quality is most likely due

to the inability of the corrected variance to sufficiently inflate the estimate of σ2 for

model uncertainty. The simulations also show a huge inflation of the standard error

for Case 4 when the AIC metric is used, as seen in Figures 4.5b and 4.5d. It is not

clear how or why this inflation arises, but it does not appear when the BIC is used.

The extended simulation results for the data-driven method can be seen in Appendix

D.7.

The probability that the GDF calculated from the GGLA through a data-driven

method echo the overall profile for the proof-of-concept simulations, but have the

negative tendencies discussed in the previous paragraph. For space considerations,

all of these results can be seen in Appendix D.8.

The Type-I errors of the four methods of constructing hypotheses for the proof-of-

concept simulations can be seen in Figure 4.6 for Cases 1 and 2. Since the corrected

variance is larger than the adjusted variance for reasonable values of the intraclass

correlation, the Type-I error rates are reflective of a test that is more apt to fail to

reject the null hypothesis, a characteristic known as being conservative. For small

sample sizes, this results in Type-I error rates being closer to the nominal value. When

the sample size becomes large, the test is often too conservative so that the test that

does not adjust for model uncertainty yields Type-I error rates that are closer to

nominal values. These characteristics are robust against the simulation parameters,
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Figure 4.4: [Probabilities that the standard errors from the GGLA method are larger
than the GLS estimators for the proof-of-concept simulation (ρ=0.25). The dashed
line is the probability, which typically overestimates the standard error compared to
the GLS estimates.
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Figure 4.5: [Data-driven simulation results showing the standard errors stemming
from the GGLA and corrected methods (ρ=0.75). The dashed line corresponds to
the generalised least squares and the mixed line corresponds to the corrected method.
These lines are very close and resemble one mixed line. The GGLA standard error
estimates are the dotted line.
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including the value of the focus parameter so that the coverage probabilities are closer

to nominal value. The extended simulation results can be seen in Appendix D.9.

When the focus parameter is truly zero, the hypothesis tests using the GGLA

method have a tendency to be liberal, or having a tendency to reject the null hypoth-

esis more often than expected. As Figure 4.5 demonstrates, this is not due a standard

error that lacks a proper adjustment for model uncertainty; rather, the estimates of

the focus parameter are more varied about zero, resulting in estimates of the focus

parameter that are larger in magnitude than the generalised least squares estimates.

This quality extends to Cases 3 and 4, where the true value of the focus parameter is

non-zero. However, in these cases, the coverage probabilities from the GGLA method

are smaller than the coverage probability using the generalised least squares method

without adjusting for model uncertainty.

The combined method exhibits similar characteristics to the corrected method

when the focus parameter is zero. It is more conservative than the generalised least

squares tests that do not adjust for model uncertainty, regardless of the sample size. It

displays a conservative tendency for large sample sizes that could be potentially limit

its practical usefulness (Figures 4.6c,4.6d). When the focus parameter is non-zero and

the number of blocks is 20, the combined method yields coverage probabilities that are

closer to the nominal value than any of the other methods. When the number of blocks

increases to 40, the unadjusted, corrected, and even GGLA methods have coverage

probabilities closer to the nominal value. These characteristics are robust against

reasonable values of the model selection metric and simulation paradigm chosen.

It is generally robust against true value of the intracluster correlation, although the

coverage probability profiles of the corrected method and combined method eventually

intersect, leading to a slightly different recommendation of a superior method if the

intracluster correlation value used for the analysis differs from the truth by a moderate

amount.
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Figure 4.6: Proof-of-concept simulation results showing the Type-I error rates for
the unadjusted method (short dashed line), corrected method (mixed line), GGLA
method (dotted line) and combined method (long dashed line) (ρ=0.25). Methods
with Type-I error rates below 0.05 for a given value of the intracluster correlation are
conservative, while those that are above are liberal.
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In addition to the results discussed previously, the Type-I error rates and coverage

probabilities were calculated from the four different methods for the data-driven tech-

nique. The results, which can be seen in Figure 4.7, have both similarities and marked

differences from the proof-of-concept simulations. The GGLA method of testing and

constructing hypotheses still exhibits poor Type-I errors and coverage probabilities

when compared to the nominal value. The tests and confidence intervals using the

corrected variance performed close to nominal or conservative testing qualities, just

as in the proof-of-concept simulations. However, the combined method is liberal when

there are 20 blocks (Figure 4.7a,4.7b) and conservative when the number of blocks

is 40 (Figure 4.7c,4.7d). This differs from the proof-of-concept results (Figure 4.5),

where the combined method was more conservative than the generalised least squares

method regardless of the number of blocks. Because of the limited block sizes stud-

ied, it remains to be seen if the combined method is superior to the generalised least

squares method for any block size.

The other marked difference between the proof-of-concept and data-driven meth-

ods lies in the unexplained results displayed in Figure 4.7. As expected, these results

made for very wide coverage probabilities, so much so that the coverage probability

was 1 for the entire coverage probability profile.

4.6 Application to the Cervical Radiculopathy Trial

The strategies discussed in Section 4.4 can be used to adjust the analysis of the

cervical radiculopathy trial, presented in Chapters 2 and 3, for model uncertainty.

Using all of the parameters in the final model gives a better insight into the behavior

of the GGLA estimate of the fixed-effect parameters in LMMs. Rather than focus on

a single parameter, this analysis focuses on all four parameters of the hypothesis set

and the eight remaining covariates in the testing set and will demonstrate the effect

of using the GGLA in approximation.
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Figure 4.7: Data-driven simulation results showing the Type-I error rates for the un-
adjusted method (short dashed line), corrected method (mixed line), GGLA method
(dotted line) and combined method (long dashed line) (ρ=0.25). Methods with Type-I
error rates below 0.05 for a given value of the intracluster correlation are conservative,
while those that are above are liberal.
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Corrected Method
Variable Estimate SE p-value 95% CI d
Intercept -0.20 3.90 0.959 (-7.85, 7.45) 0.01
Time -0.97 1.01 0.339 (-2.96, 1.02) 0.19
Treatment Group 0.59 1.37 0.666 (-2.09, 3.27) 0.09
Treatment Group×Time 0.15 1.30 0.706 (-3.04, 2.06) 0.07
BMI 0.07 0.10 0.480 (-0.12, 0.26) 0.14
Previous Symptoms 1.21 1.29 0.349 (-1.32, 3.74) 0.19
FABQ 0.15 0.03 < 0.001 (0.09, 0.21) 0.90 ∗

Work Related Injury -0.55 1.66 0.739 (-3.79, 2.69) 0.07
Baseline Pain 0.06 0.07 0.364 (-0.07, 0.16) 0.19
Bothersome Numbness -2.01 1.38 0.145 (-4.71, 0.69) 0.29
Number of Treatments -0.60 0.30 0.044 (-1.18, -0.02) 0.40 ∗

Baseline NDI 0.52 0.08 < 0.001 (0.37, 0.67) 1.33 ∗

Table 4.1: Mulitivariable analysis of the cervical radiculopathy data using the cor-
rected method. The parameters estimates with a p-value < 0.05 are flagged by an
asterisk (∗).

The corrected variance of 29.46 was used in the corrected method to adjust hy-

pothesis tests and confidence intervals for model uncertainty. The results from the

corrected method can be seen in Table 4.1. As expected, the standard errors of the

parameter estimates from the corrected method are larger than the estimates from

the method without accounting from model uncertainty. These standard errors are

1.10 times larger than the values calculated without adjusting for model uncertainty,

which mirrors the ratio of the square root of the corrected variance to the adjusted

variance. The inflation of the standard errors results in larger p-values and effect

sizes as well as wider confidence intervals. All of the variables flagged as significant

(p-value< 0.05) from the originally analysis are similarly flagged in the corrected

analysis.

Independent from the calculation of the GDF, D=200 Monte-Carlo simulations

were performed for the perturbation method to estimate the GGLA model using a

perturbation size of 0.5. The corrected variance of 29.46 was used for the value of

σ2
∗. The result of the analysis from the GGLA and combined methods can be seen
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in Table 4.2. The estimates of the fixed-effect parameters vary around the values

computed from the generalised least squares estimates, particularly for parameters

with effect sizes near zero. This variation is so large that the interpretation of the

effect of the corresponding variable on NDI often changes, making the interpretibility

unreliable. An example of this is through the variable indicating whether the injury

was work related. With just using the generalised least squares estimates, the fixed-

effect parameter estimate is positive, but using the GGLA method, the fixed-effect

parameter estimate is negative. A cursory experimentation with different seed values

in the Monte Carlo simulation offer a clear demonstration of this effect. Conversely,

when the effect size of a variable is large, the GGLA estimate of the fixed effect is fairly

robust to the change in seed and consistent in its estimation of the mean value. The

variation of the estimates is not surprising in light of the simulation results discussed

in the previous section. However, it is surprising that the estimates with high effect

sizes demonstrate a robustness against the variation.

The standard errors of the parameter estimates from the GGLA method are larger

than both the the estimates from the method without accounting from model uncer-

tainty and the corrected method. The standard errors from the GGLA method are

between 1.29 and 1.72 times larger than the unadjusted method. This results in higher

p-values, wider confidence intervals and smaller effect sizes than the aforementioned

methods. The results from the hypothesis test changed for the effect of the number

of treatments so that this variable is no longer flagged as an important predictor of

NDI. This is due decrease in the estimate of this variable, by almost 66%, and the

inflated variance due to adjusting for model uncertainty.

The results of the combined method, which can also be seen in Table 4.2, are

similar to that of the corrected method. Since the standard errors are the same as the

GGLA method, the combined method has larger p-values and effect sizes and wider

confidence intervals than either the unadjusted or corrected method. The parameter
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Corrected Combined
Quantity GLS Method Method GGLA Method Method
Omnibus P-value 0.873 0.894 0.930 0.945
Treatment Group (2 wks) 14.8 14.8 15.9 14.8
95% CI (12.3,17.2) (12.2, 17.3) (12.3, 19.6) (11.1, 18.4)
Control Group (2 wks) 14.2 14.2 15.2 14.2
95% CI (11.7, 16.6) (11.6, 16.7) (11.6, 18.9) (10.5, 17.8)
Difference (2 wks) 0.6 0.6 0.7 0.6
95% CI (-1.8, 3.0) (-2.0, 3.1) (-2.9, 4.3) (-3.0, 4.2))
Treatment Group (4 wks) 13.3 13.3 13.2 13.3
95% CI (10.9, 15.8) (10.8, 15.9) (9.5, 16.8) (9.6, 16.8)
Control Group (4 wks) 13.2 13.2 12.8 13.2
95% CI (10.8, 15.6) (10.7, 15.8) (9.2, 16.4) (9.6, 16.8)
Difference (4 wks) 0.1 0.1 0.4 0.1
95% CI (-2.3, 2.5) (-2.4, 2.7) (-3.3, 4.0) (-3.5, 3.7)

Table 4.3: Omnibus test for the effect of cervical traction and confidence intervals for
the estimated NDI for each treatment group at 2 and 4 weeks using all methods.

estimates that come from the generalised least squares method are more representative

of the true effects and make for much more meaningful inference. The increase in the

standard errors was large enough to make the parameter estimate corresponding to

the number of treatments no longer significantly different from zero (p-value=0.121),

leading to a different conclusion than either the unadjusted or corrected variance.

Lastly, the omnibus tests for a test of no overall treatment effect and the confi-

dence intervals for the NDI for the treatment groups at the 2 and 4 week follow-up

visits for each of the four methods can be seen in Table 4.3. All of the proposed

methods have a p-value that is higher than the GLS methods, which is reflective of

the inflated variance used in these methods. The GGLA method reports nominally

higher parameter estimates for the 2-week predictions compared to the methods us-

ing the generalised least squares estimates. The GGLA and combined methods have

wider confidence intervals than the GLS and corrected method. However, all of the

methods are in agreement that cervical traction shows little evidence in improving

NDI scores.
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4.7 Discussion and Conclusion

This chapter extended the concept of accounting for model uncertainty introduced

in Chapter 3 and to a vector of functions, or statistics, of the response variable. The

varaince of these statistics are potentially greater for an unknown model than if the

true model were known a priori. A simple way to adjust for model uncertainty is to

use the generalised least squares estimates of the fixed-effects and corrected variance

discussed in the previous chapter.

A separate model, known as the general global linear approximation (GGLA), was

introduced to account for model uncertainty due to its attractive qualities to inflate

the variance for inflexible models. This model provides unbiased estimates for the

vector of statistics that is being estimated and will have variance no smaller than

estimates from the generalised least squares estimates. This method was used to

incorporate model uncertainty in the fixed-effect parameter estimates. The estimates

of the GGLA method were calculated using information from the calculation of the

GDF, thus enabling a similar estimation method.

The proof-of-concept simulation results show that, even though the method pro-

duces estimates that are unbiased over many simulations, the individual estimates

are inflated by an order of magnitude that limits their usefulness in hypothesis tests,

confidence intervals, and more importantly, interpretability. However, the variance

of these quantities were appreciably inflated. Of the four methods proposed, the cor-

rected and combined methods were able to effectively make the Type-I errors and

coverage probabilities closer to the nominal values. Due to the more extreme esti-

mates produced from the GGLA method, the method solely based on the GGLA

failed to do achieve these goals.

The data-driven methodology diverged from the conclusions demonstrated by the

proof-of-concept simulations. When only the parameters of the perturbation method

were derived from the data, the GGLA and combined methods failed to demonstrate
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an ability to adjust for model uncertainty in hypothesis tests and Type-I errors. The

most robust method when using a purely data-driven approach to accounting for

model uncertainty in inference and model selection is the corrected method, as the

estimates of the Type-I error and coverage probability were closer to the nominal

value than all of the other methods

When applied to the cervical radiculopathy trial, the proposed methods showed

another quality not assessable from the simulation study. For parameters with large

effect sizes, the sensitivity of the GGLA estimates decreased so that they were an

accurate reflection of the relationship between the variable and NDI. The methods

all estimated similar conclusions regarding the lack of efficacy of the cervical traction

treatment and provided similar confidence intervals for the NDI each of the treatment

groups at both 2 and 4 weeks follow-up.

The proposed methodology made use of asymptotic theory to come to certain

conclusions regarding the form of the hypothesis tests and confidence intervals. How-

ever, the simulation results discussed in Chapter 2 and the theoretical conclusions

made in Chapters 3 and 4 show that as the sample size increases, the effects of model

uncertainty will become less pronounced due to the consistent or efficient nature of

model selection procedures. Thus, asymptotic theory does not really have an appli-

cation when model uncertainty is most prevalent. Exact, or at least non-asymptotic,

methods can be explored to address this situation and produce a better theoretic

background and provide a relevant foundation for inference and the construction of

confidence intervals.

The estimates for the parameters in the GGLA were estimated in a manner con-

sistent with the estimation of the GDF. Superior estimates may be found by finding

optimal estimates based on a loss function, such as the squared-error loss. These

estimates may be able to correct the extreme values of the GGLA estimates and poor

performance when applied with a data-driven method. This strategy will be topic of
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future endeavors.
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CHAPTER V

Discussion

Statistical knowledge has become so commonplace in the medical research com-

munity that almost all researchers and clinicians have some appreciation of statistical

foundations. Underlying all of these foundations is a statistical model, from which es-

timation, inference and prediction are drawn. However, little research has been done

exploring the effects of uncertainty in the statistical model, particularly in linear

mixed-effects models. This work explored and addressed some of these issues.

One particular instance where model uncertainty is implied is in model selection,

where data driven methods are used to recommend the models that balance between

biased estimates and inflated variances. A statistical model for model selection in

linear mixed-effect models was proposed. This model enabled fixed-effect selection,

random-effect selection, covariance structure selection, or any combination of these,

to be assessed mathematically. From this model, the expected values of the estimates

of the fixed-effects, residual variance and variance of the fixed-effects was explored.

While the generalised least square estimates of the fixed-effect parameters were un-

biased in the presence of model uncertainty, the two variance terms are potentially

biased in the presence of model uncertainty. Hypothesis tests and confidence intervals

calculated from these estimates diverged from their nominal qualities so they were

more likely to suggest a difference from a pre-specified value. The divergence of the
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hypothesis tests and confidence intervals from their stated qualities can have serious

clinical consequences.

The generalized degrees of freedom were used to correct the residual variance for

model uncertainty. This quantity was proposed by Zhang et al. (2012) and measures

a model’s flexibility to perturbations in the response variable. It was re-purposed to

adjust for model uncertainty by substituting it for the model degrees of freedom in

the generalised least squares estimate of the residual variance so that inflexible, poor-

fitting, models will have higher variance estimates. The inflated variance estimated,

referred to as the corrected variance, was meant to correct the liberal qualities of the

hypothesis tests and the overly narrow confidence intervals that result when using

the adjusted variance.

An extension of the general global linear approximation used by Shen et al. (2004a)

to adjust linear regression models was proposed to perform a similar adjustment for

linear mixed-effects models. This method enabled the unbiased estimation of an

arbitrary vector of statistics and had a variance that is related to the model fit: both

important qualities for adjusting for model uncertainty. Estimation of the parameters

in this model was based on the conclusions from generalized degrees of freedom so

that a similar estimation method could be used.

The perturbation method of estimation was used for both the generalized degrees

of freedom and the general global linear approximation. This method used a Monte

Carlo simulation to create a pseudo-response variable. A statistic that is uses the

pseudo response variable and is conditional on the observed responses was used to

estimate each of the respective quantities. Since the generalized degrees of freedom

and parameters of the general global linear approximation were able to be estimated

using easily tractable and estimable functions of the response variable, this method

was well suited for that task.

These methods were evaluated using two different simulation paradigms, each with
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multiple simulation parameters. The simulation paradigms differed only by the stan-

dard deviation used in the perturbation method. As a proof-of-concept simulation,

the value of the standard deviation used in creating the pseudo-response vector was

the value used in simulating the error distribution. A data-driven method was also

used to create the pseudo-response vector, with the generalised least squares estimate

of the standard deviation used to for the calculation of the GDF and the corrected

variance used for the general global linear approximation.

Overall, the results of these methods were mixed. The proof-of-concept simula-

tions showed promise for both the GDF calculation and general global linear approxi-

mation. The GDF values were higher than the average dimension of the model, which

translates to an inflation of the residual variance due to model uncertainty. When

this corrected variance was used in testing hypotheses and construction of confidence

intervals, the Type-I errors and coverage probabilities tended to be closer to their re-

spective nominal value than the generalised least squares results that were unadjusted

for model uncertainty.

The fixed-effects estimated from the general global linear approximation were

an unbiased estimate of the fixed-effect parameters, but larger values in magnitude

when compared to the generalised least squares estimates. Even though the standard

errors of these estimates were larger than the those produced by the generalised least

squares, the testing qualities were poorer due to the extreme values in the estimates

themselves. However, when the generalised least squares estimates of the fixed-effects

with the standard errors from the general global linear approximation, the testing

qualities improved, particularly for small samples.

The data-driven simulations provided less than ideal results. For small values

of the true intracluster correlation, the generalized degrees of freedom were able to

inflate the corrected variance. When the true intracluster correlation values were

large, this was not true; the corrected variance was equal to or even smaller than the
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adjusted variance. Any method using the general global linear approximation did

not perform well using the data driven method, although the combined method was

typically superior to the unadjusted method for small samples.

Additionally, the data from a clinical trial evaluating the efficacy of the cervical

traction in treating cervical radiculopathy was used to assess the proposed methodol-

ogy. The corrected variance showed an inflation compared to the adjusted variance.

The testing methods all inflated the standard errors, resulting in higher p-values,

wider confidence intervals and smaller effect sizes compared to a method that does

not adjust for model uncertainty. This trial also demonstrated the robustness of the

estimates of the general global linear approximation with large effect sizes and the

sensitivity of the estimates with small effect sizes. Except for the effect of the number

of treatments on the Neck Disability Index, the proposed methods came to similar

conclusions compared to the original study.

Even though the results in evaluating the proposed methods are mixed, this work

does make an impact in the field of quantifying model uncertainty. No other known

work has attempted quantify and incorporate model uncertainty when there is a

relationship between response variables. Since the active researchers in this field are

relatively few, progress toward a comprehensive solution to this issue will be slow to

occur as knowledge and insight slowly accumulates. As such, this research is expected

to significantly impact the field and lead to further development of this topic.

As with any work, practical concerns limited the breadth and scope of topics.

Some of these limitations are pertinent only to the separate methods and were dis-

cussed in the previous chapters. Others are more general and warrant a general

discussion that brings in qualities of the entire work. One general limitation of the

simulation results in this study is the large number of combinations that were able

to be changed. Simulation parameters, such as total number of covariates, block size,

error variance of the response and time independent covariates were held fixed due
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strictly to space and time concerns. It has been assumed that the results discussed

here extend to differences in these parameters, however, these need to be shown em-

pirically and are left to future work.

Relatedly, the elements of the covariance matrix were assumed to be known, up to

a constant. This is a huge limitation that will form the basis of future work. In using

the generalized degrees of freedom, an assumption was made that model the estimate

of the intracluster correlation value, which would be used in a clinical setting, were

robust against model uncertainty. There is no basis behind this assumption, as this

problem was outside the scope of this work. If this assumption does not hold, or

does not hold for any covariance structure, novel methodologies must be developed

to propose a solution to this problem.

Another possible future direction of this work is to extend the scope of poten-

tial models was beyond linear mixed-effect models. Fitting models without assuming

a normal distribution on the error structure is becoming more and more common.

Methods to adjust these models when the response variable is not considered in-

dependent have not been developed and remains a potential path of future work.

Relatedly, there is no scientific reason to suggest that linear models are superior to

other models such as non-linear mixed-effect models or generalized linear mixed-effect

models. Thus, methods can be developed to include an adjustment for possibly not

using the correct type of model for an analysis.

This work motivated the concept of model uncertainty through model selection

procedures. However, this is not a requisite procedure when adjusting for model

uncertainty. Except in extremely well-controlled experiments in laboratory sciences

such as chemistry and physics, the models typically used in an analysis are not known

and only considered an approximation. Thus, the methods developed in this paper,

as well as some of the other works referenced here, are able to be used even when a

model selection procedure is not performed.
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APPENDICES
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APPENDIX A

Extended Simulation Results

A.1 Fixed Effect Estimation

A.1.1 No Parsimony Correction

A.1.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.1.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.1.2 With Parsimony Correction

A.1.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.1.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.2 Residual Variance Estimation

A.2.1 No Parsimony Correction

A.2.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.2.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.2.2 With Parsimony Correction

A.2.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.2.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.3 Standard Error Estimation

A.3.1 No Parsimony Correction

A.3.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.3.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.3.2 With Parsimony Correction

A.3.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

128



www.manaraa.com

BIC : ρ=0.75

A.3.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.4 Type-I Error and Coverage Probability

A.4.1 No Parsimony Correction

A.4.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25

132



www.manaraa.com

BIC : ρ=0.75

A.4.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.4.2 With Parsimony Correction

A.4.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

A.4.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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APPENDIX B

Chapter 3 Proofs

Prior to detailing the results of Thereom 3.1 and Lemma 3.2, it is necessary to

discuss the assumptions needed for the proof. After all partitioning, the statistical

model can be written as

Y = X1 · β1 + X2,Mo · β2,Mo
+ X2,MC

o
· β2,MC

o
+ ε = B∗ · η + W∗ · γ + ε (B.1)

with B∗=(X1,X2,Mo) and W∗=X2,MC
o

. This partitioning implies that β = (η′,γ ′)′.

Recall that var(ε)=σ2 ·V so that (B.1) can be written as:

Yt = B · η + W · γ + u. (B.2)

where V−
1
2 ·V− 1

2 =V−1 so that Yt=V−
1
2 ·Y, W=V−

1
2 ·W∗, B=V−

1
2 ·B∗ and u=V−

1
2 ·ε.

Since it is assumed that the elements of W∗ and W are unrelated to the response

vectors Y and Yt, it can be assumed that γ=0. The error term in (B.2), u, has

variance σ2 · I so that ordinary least squares estimates can be used for all estimation.

The design matrices B and W are set up so W and Y are perpendicular to

each other, which implies that Y′t ·W=0. The matrix B contains all vectors not

perpendicular to Y. Thus, the projection of B onto Yt is a non-zero vector (B ·
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(B′ ·B)−1 B′ · Yt 6= 0). For any matrix A, define PA= A · (A′ ·A)−1 A′ so that

PA us the commonly defined projection matrix. This matrix is both symmetric

and idempotent. From the previous definition of W and B, the following is true:

PB ·W=PW ·B=0.

The proof of Thereom 2.1.1 will use the aforementioned information directly. The

proof of Thereoms 2.1.2 and 2.1.3 stem from the transformation used in (B.2) and

are simple extension of the proof found in Shen et al. (2004a). However, a detailed

explanation of that proof is as follows.

B.1 Proof of Thereom 3.1 and Lemma 3.2

Even though the distribution of the error terms in (B.1) are not idependent and

identically distributed, the transformation used to get (B.2) results in independent

and identically distributed error terms. Thus, the proof is for Thereoms 2.1.2 and

2.1.3 have been discussed by Shen et al. (2004a). However, a discussion of this proof

follows to ensure completeness and uniformity in notation.

Under the generalized least squares estimates, the estimate of the vector of fixed-

effects is:

β̂ =

 η̂

γ̂

 =


 B′

W′

 · ( B W

)
−1

·

 B′ ·Yt

W′ ·Yt


=

 B′ ·B B′ ·W

W′ ·B W′ ·W


−1

·

 B′ ·Yt

W′ ·Yt


(B.3)

The inverse of the partitioned matrix in (B.3) can be solved using well-known

methods found in any standard multivariate analysis or linear algebra text. Solving
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this inverse yields:

 B′ ·B B′ ·W

W′ ·B W′ ·W


−1

=

 (B′ ·QW ·B)−1 −(B′ ·QW ·B)−1 ·B′ ·W · (W′ ·W)−1

−(W′ ·QB ·W)−1 ·W′ ·B · (B′ ·B)−1 (W′ ·QB ·W)−1


(B.4)

Combining (B.2), using γ=0, (B.3) and (B.4) yields:

 η̂

γ̂

 =

 (B′ ·QW ·B)−1 ·B′ ·Y − (B′ ·QW ·B)−1 ·B′ ·W · (W′ ·W)−1 ·W ·Yt

(W′ ·QB ·W)−1 ·W′ ·Y − (W′ ·QB ·W)−1 ·W′ ·B · (B′ ·B)−1 B′ ·Yt


=

 (B′ ·QW ·B)−1 ·B′ ·QW ·Y

(W′ ·QB ·W)−1 ·W′ ·QB ·Y


=

 (B′ ·QW ·B)−1 ·B′ ·QW · (B · η + u)

(W′ ·QB ·W)−1 ·W′ ·QB · (B · η + u)


=

 η + (B′ ·QW ·B)−1 ·B′ ·QW · u

(W′ ·QB ·W)−1 ·W′ ·QB · u

 (B.5)

The elimination of a term in γ̂ is due to the identity QB ·B = (I−PB) ·B = 0.

After a model selection procedure is used, (B.5) can be written as:

β̂M̂ =

 η̂M̂

γ̂M̂

 =

 η + (B′ ·QWM̂
·B)−1 ·B′ ·QWM̂

· u

(WM̂
′ ·QB ·WM̂)−1 ·W′

M̂
·QB · u

 (B.6)

where WM̂ contains only columns of W that were recommended by the model se-

lection procedure. As the sample size n gets large, the consistent or overconsistent
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property of the model selection procedure will mean that WM̂ → 0, resulting in

QWM̂
=(I−PWM̂

)→ I. Therefore:

lim
n→∞

β̂M̂ = lim
n→∞

 η̂M̂

γ̂M̂

 =

 η + (B′ ·B)−1 ·B′ · u

0

 (B.7)

Since u is null valued, the expectation of of (B.7) yields E(limn→∞ β̂M̂) = (η′,0′)′.

Lastly, β2,MC
o

= 0 implies that W = 0, which, in addition to (B.6), completes the

proof of Theorem 3.1.

This proof does not use the identity PB ·W=PW ·B=0. Invoking this identity in

(B.5) permits the conclusion that E(µ̂M̂) = β. However, to remain general against

the paradigm that model selection is performed, the conclusion of Theorem 3.1 is

as stated. The aymptotic convergence of the efficient and consistent model selection

properties were explored by Shao (1997) and considered to be in probabilitiy for both

consistent and effiencient model selection; almost sure convergence is achieved for

consistent model selection. Thus, the fixed-effect estimates will have this effect as

well.

From (B.7), it is apparent that asymptotically β̂M̂ is a linear function of u, which

has a normal distribution with mean 0 and variance σ2·I. Since β̂M̂ is a linear function

of a normally distributed random variable, it will have a normal distribution, thus

completing the proof of Lemma 3.2.

B.2 Proof of Thereom 3.3

In the framework of model selection using information criteria, models are selected

that minimize a function that is proportional to
(
Yt − Ŷ′M,t

)
·
(
Yt − Ŷ′M,t

)
+ c · pM

where ŶM,t is the ordinary least squares predicted values which can be denoted by
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PB,WM
·Yt. Equivalently, this criterion can be denoted by:

u′ · (I−PB,WM
) · u + c · pM . (B.8)

Since the criterion of selecting a particular model is based on fixed characteristics

of the model (PB,WM
, pM), a constant c and a random vector u, the estimated model

can be viewed probablistically. A dichotomous variable I(M̂=M) can be used to

indicate whether model M is the selected model. This variable can be thought of a

Bernoulli variable with probability P(M̂=M ).

For model M, the ordinary least squares estimate of σ2 is σ̂2
M=SSEM

N−pM where SSEM

=SSEB,WM
is the error sums of squares defined by operand of the logarithm function

in (B.8), pM is the total number of columns of B and WM (assuming both B and

WM are full rank), and N is the total number of observations. If the true model is

known, then the expected value of the variance estimate is E(σ̂2
Mo

)= SSEB
N−pMB

. By the

definition of expected value,

E(σ̂2
M̂

) =
∑

M :M⊂Mo

σ̂2
M · P(M̂ = M) =

∑
M :M⊂Mo

SSEM
N − pM

· P(M̂ = M) (B.9)

From thel decomposition of the sums of squares, it is known that SSEM = SSTO−

SSRM where SSTO is the total sums of squares and SSRM=SSRB,WM
is the sum

of squares regression defined as Y′t · PB,WM
·Yt. Note that SSTO is constant with

respect to different models and only a function of Yt. The decomposition of (B.9)

yields

E(σ̂2
M̂

) =
∑

M :M⊂Mo

(SSTO − SSRM) · P(M̂ = M)

N − pM

=
∑

M :M⊂Mo

(SSTO − SSRB − SSRWM
) · P(M̂ = M)

N − pM

(B.10)
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The decomposition of SSRM is possible because, by definition, PB and PWM
are

orthogonal. (B.10) can be rewritten as:

E(σ̂2
M̂

) =
∑

M :M⊂Mo

(SSTO − SSRB) · P(M̂ = M)

N − pM
− SSRWM

· P(M̂ = M)

N − pM

≥
∑

M :M⊂Mo

(SSTO − SSRB) · P(M̂ = M)

N − pM

(B.11)

If the right-hand side of (B.11) is multiplied by
N−pMB
N−pMB

, it is easy to see that

E(σ̂2
M̂

) ≥ E(σ̂2
Mo

) · N − pMB

N − pM

and since
N−pMB
N−pM

≤ 1,

E(σ̂2
M̂

) ≥ E(σ̂2
Mo

) (B.12)

Furthermore, equality in (B.12) can be shown if W=0, thus completing the proof

of Thereom 3.3.

B.3 Proof of Theorem 3.5

Definition 3.4 states that the GDF of a model is ∂
∂yij

E(µ̂ij). Under the generalized

least squares estimators, the predicted values are linear functions of the response

variable Y. The definition of the expected value permits writing the generalized

leverage as:

hMij =
∂

∂µij
E [µ̂ij(Y)] =

∂

∂µij

∫
µ̂ij(Y) · p(Yi|µi,Vi)dYi (B.13)

where p(Yi|µi, σ2 ·Vi) is the distribution of Yi, which, under the LMM, is normally

distributed with mean µ and variance σ2 · Vi. If the order of the integration and

differentiation are transposed, then:
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hMij =

∫
∂

∂µij
µ̂ij(Y) · p(Yi|µi,Vi)dYi

=

∫
µ̂ij(Y) · ∂

∂µij
p(Yi|µi,Vi)dYi

=

∫
µ̂ij(Y) · (2π)

ni
2 · |Vi|−

1
2 · ∂

∂yij
exp

(
− 1

2 · σ2
(Yi − µi)′ ·V−1i · (Yi − µi)

)
dYi

=

∫
µ̂ij(Y) · (2π)

ni
2 · |Vi|

1
2 · exp

(
− 1

2 · σ2
(Yi − µi)′ ·V−1i · (Yi − µi)

)
· − 1

2 · σ2[
(Yi − µi)′ ·V−1i · ej + e′j ·V−1i · (Yi − µi)

]
· (−1)dYi

(B.14)

Combining terms and using the definition of the expected value leads to the first

part of Theorem 3.5:

hMij =
1

σ2
· E
[
µ̂ij(Y)(Yi − µi)′ ·V−1i · ej

]
To show the second part of the Theorem, consider the definition of the covariance

operator is used. For clarity, the notation denoting the dependency of the response

vector on the predicted values is dropped.

1

σ2
· cov(µij, (Yi − µi)′ ·V−1i · ej) =

1

σ2
cov(ej · µ̂i,Y′ ·V−1i · ej)

=
1

σ2
e′j · cov(µ̂i,Y) ·V−1i · ej

=
1

σ2
e′j · E [(µ̂i − E(µ̂i) · (Yi − E(Yi)

′)] ·V−1i · ej

Expanding the operands of the expectation yields:

1

σ2
e′j · E [(µ̂i ·Y′i − E(µ̂i) ·Y′i − µ̂i · E(Y′i)− E(µ̂i) · E(Y′i)] ·V−1i · ej

1

σ2
e′j · E [(µ̂i ·Y′i − µ̂i · E(Y′i)] ·V−1i · ej + E [E(µ̂i) · E(Y′i)− E(µ̂i) ·Y′i] ·V−1i · ej
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1

σ2
e′j · E [(µ̂i ·Y′i − µ̂i · µ′i] ·V−1i · ej + 0 = E

[
µ̂ij(Y)(Yi − µi)′ ·V−1i · ej

]
This completes the proof of Theorem 3.5.
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APPENDIX C

Extended GDF Simulation Results

C.1 Generalized Degrees of Freedom-Proof-of-Concept

C.1.1 No Parsimony Correction

C.1.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.1.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.1.2 With Parsimony Correction

C.1.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.1.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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C.2 Relationship between GDF and Model DF – Proof-of-

Concept

C.2.1 No parsimony correction

C.2.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.2.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.2.2 With Parsimony Correction

C.2.2.1 Cases 1 and 2

AIC : ρ=0.25

161



www.manaraa.com

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.2.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.3 Generalized Degrees of Freedom-Data-Driven Method

C.3.1 No Parsimony Correction

C.3.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.3.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.3.2 With Parsimony Correction

C.3.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.3.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

172



www.manaraa.com

BIC : ρ=0.75
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C.4 Relationship between GDF and Model DF – Proof-of-

Concept

C.4.1 No parsimony correction

C.4.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.4.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.4.2 With Parsimony Correction

C.4.2.1 Cases 1 and 2

AIC : ρ=0.25

178
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AIC : ρ=0.75

BIC : ρ=0.25

179
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BIC : ρ=0.75

C.4.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.5 Corrected Variance-Proof-of-Concept

C.5.1 No Parsimony Correction

C.5.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25

183
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BIC : ρ=0.75

C.5.1.2 Cases 3 and 4

AIC : ρ=0.25

184
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.5.2 With Parsimony Correction

C.5.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.5.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

C.6 Corrected Variance-Data-Driven Method

C.6.1 No Parsimony Correction

C.6.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25

191
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BIC : ρ=0.75

C.6.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

193



www.manaraa.com

BIC : ρ=0.75

C.6.2 With Parsimony Correction

C.6.2.1 Cases 1 and 2

AIC : ρ=0.25

194
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AIC : ρ=0.75

BIC : ρ=0.25

195
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BIC : ρ=0.75

C.6.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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APPENDIX D

Extended GGLA Simlulation Results

D.1 Fixed Effect Estimation–Proof-of-Concept

D.1.1 No Parsimony Correction

D.1.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.1.1.2 Cases 3 and 4

AIC : ρ=0.25

201
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AIC : ρ=0.75

BIC : ρ=0.25

202
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BIC : ρ=0.75

D.1.2 With Parsimony Correction

D.1.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.1.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.2 Fixed Effect Estimation-Data-Driven Method

D.2.1 No Parsimony Correction

D.2.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.2.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.2.2 With Parsimony Correction

D.2.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.2.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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D.3 Simulation Standard Deviation of Fixed-Effect Estimates–

Proof-of-Concept

D.3.1 No Parsimony Correction

D.3.1.1 Cases 1 and 2

AIC : ρ=0.25

F

216



www.manaraa.com

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.3.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

219
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BIC : ρ=0.75

D.3.2 With Parsimony Correction

D.3.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

221



www.manaraa.com

BIC : ρ=0.75

D.3.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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D.4 Simulation Standard Deviation of Fixed-Effect Estimates-

Data-Driven Method

D.4.1 No Parsimony Correction

D.4.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.4.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.4.2 With Parsimony Correction

D.4.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.4.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.5 Standard Error Estimation - Proof-of-Concept

D.5.1 No Parsimony Correction

D.5.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.5.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25

236
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BIC : ρ=0.75

D.5.2 With Parsimony Correction

D.5.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.5.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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D.6 Relationship between SEs from GGLA and SEs from

GLS – Proof-of-Concept

D.6.1 No parsimony correction

D.6.1.1 Cases 1 and 2

AIC : ρ=0.25

242
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.6.1.2 Cases 3 and 4

AIC : ρ=0.25

244
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.6.2 With Parsimony Correction

D.6.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.6.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.7 Standard Error Estimation - Data-Driven Method

D.7.1 No Parsimony Correction

D.7.1.1 Cases 1 and 2
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.7.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.7.2 With Parsimony Correction

D.7.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.7.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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D.8 Relationship between SEs from GGLA and SEs from

GLS – Data-Driven

D.8.1 No parsimony correction

D.8.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.8.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.8.2 With Parsimony Correction

D.8.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.8.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.9 Type-I Error and Coverage Probability - Proof-of-Concept

D.9.1 No Parsimony Correction

D.9.1.1 Cases 1 and 2

267
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AIC : ρ=0.25

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.9.1.2 Cases 3 and 4

AIC : ρ=0.25

269



www.manaraa.com

AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.9.2 With Parsimony Correction

D.9.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.9.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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D.10 Type-I Error and Coverage Probability - Data-Driven

Method

D.10.1 No Parsimony Correction

D.10.1.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.10.1.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.10.2 With Parsimony Correction

D.10.2.1 Cases 1 and 2

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75

D.10.2.2 Cases 3 and 4

AIC : ρ=0.25
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AIC : ρ=0.75

BIC : ρ=0.25
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BIC : ρ=0.75
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